Три А,даЯ коротко опишу более аккуратную формулировку Вашего наблюдения и известные мне результаты в обобщении этого направления.
Действительно, легко заметить, что числа вида
и
(
) при применении итераций Коллатца достигают 1 за одинаковое количество шагов. Можно ли построить цепочку из 3 (4, 5,...) подряд идущих чисел с таким же свойством? Конечно. Например, для каждого
следующие пять чисел
достигнут 1 за одинаковое количество шагов (для разных
количество шагов будет, конечно, разным). Подобные формулы легко доказывать в лоб и чуть менее легко выводить также в лоб.
В приведенной ниже цитате количество шагов называют длиной пути.
Scientific American в 1984 г. писал(а):
Распределение длины пути столь же хаотично. Можно породить любую из возможных длин пути (последовательностью точных степеней двойки), но и в этом случае некоторые числа будут появляться чаще других. Кроме того, и длины пути, и максимумы проявляют чёткую тенденцию к группированию в кластеры. Ф. Грюнберг из Калифорнийского университета в Нотридже в 1976 году опубликовал перечень таких кластеров. Самый обширный из них представлял собой цепочку из 52 целых чисел, которые проходили одинаково длинный путь.
Вот такие смешные рекорды были в 1976 году (и, наверно, держались до 1984). У меня есть основания предполагать, что я являюсь обладателем рекорда сегодняшнего дня
(вряд ли кому-то ещё пришло бы в голову потратить несколько дней на составление сносного алгоритма и месяца машинного времени на поиск более высокого результата). Как бы там ни было, мне известен вот такой результат:
5705 подряд идущих чисел, начиная с 2 864 760 066 737 568 достигают 1 за 447 шагов.Любопытно, что прослеживается весьма чёткая зависимость размеров максимальных кластеров от величины чисел. При этом какой-либо зависимости для количества шагов заметить не удалось.
К сожалению, эти островки постоянства хоть и встречаются часто, но слишком коротки, чтобы как-то помочь с доказательством самой гипотезы.