А насчёт второй загадки (кому вдруг тяжело смотреть) - там я утверждал, что могу по произведению даты рождения, числа и месяца сказать, какие три числа были перемножены!
Пока эта загадка не канула в Лету (случайно вместе со мной!), решить написать решение.
Первым делом раскрою один секрет калькулятора, который я однажды случайно узнал. Возьмём пример. Допустим, умножаем на калькуляторе 3 × 8, нажав "=", увидим результат 24. Теперь если мы будем нажимать на клавишу "√" до тех пор пока на табло не высветится единица, а после этого снова нажмём на "=", то перед нами предстанет число "3". То есть первый (предпоследний) множитель. Вот и вся тайна! (Кстати, не пытайтесь проделывать этот трюк на мобильных, планшетных или компьютерных калькуляторах - там эта функция не работает). Если же мы перемножим подряд три числа, допустим, 3 × 8 × 2, и проделаем те же операции, то пред нами появится число "8". То есть снова-таки лишь предпоследнее число. Потому, когда я составлял этот фокус, то предо мной была задача, как же догадаться до того, какие остальные два числа были умножены. Неожиданно я заключил: а что если поменять порядок перемножаемых чисел - даст ли мне это что-нибудь? Оказалось, что даст! Если мы в первую очередь умножим год на число дня рождения, а в третью очередь уже на порядковый месяц, то нам точно станет известно число рождения. Далее объясняю на примере.
Такая дата: 27.11.1989. Человек зашёл, мы ему словно непринужденно говорим, что и как умножать, чтобы он ничего не заподозрил, почему именно такой порядок. Результат у него вышел 590733. Мы проделываем операцию с "√" - у нас появляется число 27. Таким образом мы узнаем число рождения. Делим 590733 на 27, получаем 21879. Данное число есть произведение года на месяц. То есть теперь год узнать проще простого - всего-то надо перебрать 12 чисел месяца, поделив поочерёдно 21879 на числа от 1 до 12. Но! И тут есть упрощение. Несколько раз проделывая этот фокус, я заметил одну закономерность и вывел из этого формулу. Значит, перед нами число 21879. Последние три цифры отбрасываем. Получается 21. Если число получается при этом нечётное, то прибавляем к нему 1 и делим на 2; а если чётное, то просто делим на 2. У нас вышло нечётное: (21+1):2=11. Как видим, не пришлось перебирать месяцы. Это действие легко проделывается в уме. Далее, думаю, всем всё ясно. Конец!
Когда я проводил этот фокус, всегда старался показать (обычно гостям) его так, что, мол, калькулятор тут вообще не важен. Готовил листок бумаги, ручку, и просил перемножить три числа даты рождения, и тут, как бы между прочим, заявлял, что у меня недалеко есть калькулятор - не хотите ли, господа, им воспользоваться для удобства и быстроты подсчёта?! Ничего не подозревая, никто не отказывался, естественно! Далее я просил калькулятор якобы переписать результат, да и самому тяжело, мол, считать по мудрёным формулам, и... В общем, простор для фантазии тут у каждого из вас найдётся.
Удачи, и благодарю за внимание!