PAV, спасибо за понимание
Сейчас меня интересует частный случай:
подсчет числа вхождений "1" и "-1" (знаки не различаются) в троичной сбалансированной записи {-1, 0, 1} числа n.
Вернее даже суммарный взвешенный показатель определяемый для интервала [1, N] как
, где x - найденное число вхождений, i - количество позиций, floor - округление до наименьшего целого.
Для примера: имеются числа от 1 до N, записанные в троичной системе, для простоты ограничимся тремя позициями (p=3).
Такая запись представляет собой таблицу 3 столбика на 3^3 (27) строчек, для каждой строчки мы считаем ненулевые элементы.
Ниже представлены результаты
Код:
1 2 3
6 12 8
как видно полных строчек в таком разложении 8, теперь это число нужно разделить на (3+1) и взять наименьшее целое.
Тоже самое для 6/(1+1) и 12/(2+1), в результате получим 3+4+2=9.
Почему я спрашиваю про формулу - мне надо показать, что вне зависимости от p эта сумма всегда больше чем 2^p