Добавлю элементарное пояснение, т.к. на форуме немало появляется ленивцев, которые вместо чтения учебника сами себя сладостно гипнотизируют своими непонятками про энергию.
С.МальцевВы здесь разбираете довольно простую учебную задачку, неплохую для знакомства с СТО. Когда Вы рассматривали распад покоящейся частицы на две частицы (с массами
и скоростями
), то правильно сосчитали то, что Вам хотелось сосчитать.
Но теперь, с фотонами, использовать старый ответ (число
) в роли "энергии аккумуляторов"
нельзя - потому, что законы сохранения энергии и импульса при участии реальных (безмассовых) фотонов ведут к иным кинематическим соотношениям, нежели при наличии только массивных частиц. Поясню подробно.
Вы ошибаетесь, полагая, что покоящаяся частица с масой
может быть ускорена до энергии
за счёт полного поглощения падающих на неё фотонов. Такой процесс поглощения не удовлетворяет закону сохранения импульса, потому что импульс поглощённых фотонов по величине равен их энергии (где
), а величина импульса ускорившейся частицы равна
Процесс, запрещённый каким-либо законом сохранения в исходной ИСО, запрещён и с точки зрения любых других наблюдателей, т.е. он запрещён во всех ИСО. Поэтому в вашей задачке следует рассматривать другие варианты взаимодействия частицы с фотонами. Например: падающие фотоны могут полностью поглощаться частицей с массой
, нагревая её; нагревание эквивалентно увеличению массы частицы
на некоторую величину
Рассмотрим другой вариант, без изменения массы частицы
: падавшие на частицу фотоны её ускорили до желаемой Вами скорости
, но при этом излучились отражённые фотоны. В этом варианте закон сохранения энергии запишется так (для частицы 1 в ваших обозначениях, которая ускоряется налево; всё пишем в ИСО "А", где частица в начальном состоянии покоилась):
,
где буквами
обозначены величины энергии падающих и отражённых фотонов. При этом закон сохранения импульса системы "частица 1 плюс фотоны" (для одномерного движения, т.е. это составляющая импульса относительно оси
) запишется так:
.
Конкретно для вашего численного примера, т.е. при
, из этих двух равенств легко найти необходимую энергию падающих на частицу фотонов:
то есть
Аналогичным образом такой же ответ получается и для частицы 2.
Аналогично и при рассмотрении излучателей надо аккуратно учитывать импульс фотонов. Сначала рассмотрим всё в той же ИСО "А", где частицы и излучатели в начальном состоянии покоились. Тут тоже есть варианты. Если два излучателя не были связаны друг с другом, то после излучения фотонов они вследствие "эффекта отдачи" окажутся движущимися навстречу друг другу, с тем болшей скоростью, чем меньше у них масса. Тогда в расчёт энергии аккумуляторов надо включить не только энергию фотонов
, но и добавочную энергию, которая пойдёт на разгон самих излучателей и которая зависит от оставшейся в итоге массы излучателей (не заданной в этой задаче).
Проще другой вариант: рассмотрим оба излучателя как одно жёсткое тело массой
которое, излучив в противоположные стороны равное количество фотонов с суммарной энергией
остаётся в покое. Закон сохранения импульса при этом автоматически выполняется; закон сохранения энергии тоже записывается совсем просто:
.
Посмотрим на этот же самый процесс излучения фотонов с точки зрения другого наблюдателя, т.е. из другой ИСО, "Б", где излучатель в начальном состоянии выглядел движущимся направо со скоростью
Тогда в конечном состоянии (после излучения фотонов) излучатель движется с той же скоростью
Закон сохранения энергии в ИСО "Б" запишется в виде:
,
где
- энергия фотонов улетевших налево,
- энергия фотонов, улетевших направо. Из этого равенства следует, что в данной ИСО суммарная энергия фотонов больше, чем она была в системе покоя излучателя:
.
Этот результат легко проверяется с помощью преобразований Лоренца (ПЛ). Энергия
и импульс
любого летящего налево фотона преобразуются как временн
ая и пространственная компоненты 4-вектора; аналогично преобразуется и 4-импульс
фотона, летящего направо. Из ПЛ находим:
,
.
Видно, что сумма этих энергий как раз в должное число раз больше, чем
. Так же легко проверяется равенство импульса излучателя в начальном состоянии суммарному импульсу излучателя и фотонов после окончания процесса излучения:
.
Несложно понять и ответ на вопрос, почему энергия летящих налево фотонов
в ИСО "Б" оказалась меньшей, а энергия летящих направо фотонов
оказалась большей, чем энергия этих же фотонов
в ИСО "А".
Из указанных здесь формул для
и
видно, что в них входит тот же самый множитель, которым описывается релятивистский эффект Доплера. По отношению к любому покоящемуся в ИСО "Б" приёмнику летящие налево фотоны испущены удаляющимся от приёмника излучателем со скоростью
и поэтому их частота понижена; по отношению же к любому неподвижному приёмнику летящих направо фотонов излучатель приближается со скоростью
и поэтому их частота повышена "в соответствующий корень раз". Энергия же принимаемых фотонов как раз должна быть пропорциональна частоте принимаемого излучения (в этом пояснении фотоны трактуются именно как фотоны - как кванты эм-энергии). Так что, всё ОК: частота фотона, как и энергия, не есть инвариант; она зависит от выбора ИСО, и как раз так, что закон сохранения энергии выполняется в любой ИСО, хотя сами значения энергии оказываются разными в разных ИСО.
Итог:
Проблема с "пониманием энергии" в простых задачах обычно возникают у тех людей, которые пренебрегая известным предостережением в ФЛФ пытаются представить себе энергию наподобие "пилюли": будто бы энергия передаётся от частицы к частице как нечто полностью самостоятельное, существующее отдельно от частиц. Тогда людям кажется странным, что две одинаковые "энергии-пилюли" в одной ИСО, летящие в противоположные стороны, могут стать разными пилюлями в другой ИСО. Но эта проблема исчезает по мере уяснения того, что энергия - не пилюля, а количественная характеристика процесса, зависящая от системы отсчёта. Принцип относительности, утверждающий равноправие всех ИСО, вовсе не утверждает, что количественные характеристики конкретного процесса одинаковы во всех ИСО.
Общеизвестный пример: пулька массой
, летящая с ненулевой скоростью
и, значит, с нерелятивистской энергией
относительно одной ИСО, в то же самое время имеет нулевую скорость и, значит, равную нулю энергию относительно другой ИСО - относительно наблюдателя, летящего вместе с пулькой. Аналогично и в примере с двумя пульками, летящими в противоположные стороны с равными по величине скоростями относительно наблюдателя "А": относительно другого наблюдателя ("Б"), скорости тех же самых пулек (и их энергии) очевидным образом не равны.