2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2  След.
 
 Метрика на сфере
Сообщение10.01.2015, 04:00 
Аватара пользователя
Решаю следующую задачу:
Докажите, что расстояние между точками, лежащими на сфере, можно измерять по хорде и по дуге, не превосходящей половины длины большого круга. Установите связь между этими метриками.
С хордой все понятно, проведем, например, начало координат в центре сферы, и будем мерить хорду как расстояние между двумя точками, формулой: $r(x,y)=\sqrt{\left\lvert  x_{2} - x_{1}\right\rvert +\left\lvert  y_{2} - y_{1}\right\rvert + \left\lvert  z_{2} - z_{1}\right\rvert} $
Первые две аксиомы, очевидно, выполняются, для третьей :
$r(x,y)=\sqrt{\left\lvert  x_{2} - k_{x}\right\rvert +\left\lvert  y_{2} - k_{x}\right\rvert + \left\lvert  z_{2} - k_{z}\right\rvert} + \sqrt{\left\lvert  k_{x} - x_{1}\right\rvert +\left\lvert  k_{y} - y_{1}\right\rvert + \left\lvert  k_{z} - z_{1}\right\rvert} \geq \sqrt{\left\lvert  x_{2} - x_{1}\right\rvert +\left\lvert  y_{2} - y_{1}\right\rvert + \left\lvert  z_{2} - z_{1}\right\rvert}  $
Возвести обе части в квадрат и в левой части сгруппировать соответствующие для $x,y,z$ модули и применить для них правило треугольника.
А вот как померить дугу на сфере не очень понятно, формулы какой-то конкретной не видно. Причем, нужно выбирать видимо так, чтобы потом можно было с хордой связать. Подскажите пожалуйста, в каком направлении мыслить дальше.

 
 
 
 Re: Метрика на сфере
Сообщение10.01.2015, 10:30 
Аватара пользователя
Здрасьте, что это у вас за "расстояния"? Про квадраты забыли? Расстояние по хорде - обычное евклидово, про него все давно уже доказано (в лекциях, наверное, тоже).
Расстояние по дуге измеряется ее центральным углом. Что приводит нас к решенной чуть ранее задаче о лучах.

 
 
 
 Re: Метрика на сфере
Сообщение10.01.2015, 14:01 
Аватара пользователя
provincialka в сообщении #959422 писал(а):
Здрасьте, что это у вас за "расстояния"? Про квадраты забыли?

Да ладно, обычные манхеттенские расстояния :-)

Bacon в сообщении #959405 писал(а):
А вот как померить дугу на сфере не очень понятно, формулы какой-то конкретной не видно. Причем, нужно выбирать видимо так, чтобы потом можно было с хордой связать.

Да уж, явную формулу тут так просто не выпишешь, НО. Это можно сделать, если повернуть систему координат, совместив одну точку с северным полюсом, а вторую, заодно, для простоты поместив на нулевой меридиан.

 
 
 
 Re: Метрика на сфере
Сообщение10.01.2015, 14:08 
Аватара пользователя
Munin в сообщении #959464 писал(а):
Да уж, явную формулу тут так просто не выпишешь,

Тоже мне, Задача 1000-летия: зная хорду найти соответствующий ей угол.

 
 
 
 Re: Метрика на сфере
Сообщение10.01.2015, 14:17 
Аватара пользователя
LOL
Тут, вроде бы, задача в том, чтобы найти их независимыми путями.

Хотя итоговая формула-то будет одна и та же, можно и сжульничать.

 
 
 
 Re: Метрика на сфере
Сообщение10.01.2015, 15:11 
Аватара пользователя
Munin в сообщении #959464 писал(а):
Да ладно, обычные манхеттенские расстояния :-)

Ну, положим, корень из манхэттенского. Впрочем, подождем ТС. Пусть сам решает.

 
 
 
 Re: Метрика на сфере
Сообщение10.01.2015, 15:27 
Аватара пользователя
provincialka
Эквивалентно же! Так как корень выпукл вверх.

 
 
 
 Re: Метрика на сфере
Сообщение10.01.2015, 16:16 
Аватара пользователя
Legioner93
Я уже с этим ТС общалась. С ним надо все постепенно. А при чем тут эквивалентность? Про это вопроса не было.
А вот выражать длину дуги легче через евклидово расстояние.

 
 
 
 Re: Метрика на сфере
Сообщение10.01.2015, 18:18 
Аватара пользователя
Я даже боюсь себе представить, что такое манхэттенская длина дуги :-)

-- 10.01.2015 18:19:06 --

Legioner93
Разве там дело в выпуклости, а не в монотонности?

 
 
 
 Re: Метрика на сфере
Сообщение10.01.2015, 19:00 
Аватара пользователя

(Оффтоп)

Munin
Конкретно для эквивалентности нужна только монотонность, согласен.
Но (строго) выпуклая вверх на всей полуоси положительная функция в любом случае (строго) монотонна будет.

 
 
 
 Re: Метрика на сфере
Сообщение10.01.2015, 20:15 
Аватара пользователя
provincialka
Да, плохая это была идея начать решать задачу в полчетвертого утра.
Тогда Хорды будем мерить Евклидовой метрикой:
$ r(x,y)=\sqrt{  (x_{2} - x_{1})^{2} +(  y_{2} - y_{1})^{2} + ( z_{2} - z_{1})^{2}} $
А дуги, действительно сводятся к лучам из прошлой задачи.
Остается только связь между ними установить. Думаю сгодится формула Гюйгенса. Пусть есть дуга $AB$, для нее проведем хорду $ab$, через середину $ab$, назовем $C$ перпендикуляр проведем, точку пересечения назовем М. Тогда $AB=2am + \frac{1}{3}(2am - ab)$
Посчитать $am, ab$ метрикой Евклида и все.
Только как это в общем виде записать? Так что ли:
$r(A,B)=2r_{1}(A,M) + \frac{1}{3}(2r_{1}(A,M) - r_{1}(A,B))$
Только точка $M$ странно смотрится. Нужно ли ее прятать ? Через прямоугольный треугольник, например. Но тогда угол всплывет.

 
 
 
 Re: Метрика на сфере
Сообщение10.01.2015, 20:28 
Аватара пользователя
Опять сложно. Рассмотрите сектор окружности радиуса $r$ с дугой $l$. Найдите центральный угол $\alpha$, а через него хорду $d$.

 
 
 
 Re: Метрика на сфере
Сообщение10.01.2015, 20:55 
Аватара пользователя
provincialka
Не пойму, зачем находить угол, ведь он же и есть метрика на дугах, нельзя ли тогда просто вот так связать:
$d=2Rsin(\frac{\theta}{2})$
где $\theta$ - центральный угол в радианах.
Тогда в общем виде получится:
$r_{1}(A,B)=2Rsin(\frac{r_{2}(A,B)}{2})$

 
 
 
 Re: Метрика на сфере
Сообщение10.01.2015, 21:00 
Аватара пользователя
Bacon в сообщении #959650 писал(а):
Не пойму, зачем находить угол, ведь он же и есть метрика на дугах

Почему угол? Я так поняла, что длина дуги. А она от радиуса зависит.

 
 
 
 Re: Метрика на сфере
Сообщение10.01.2015, 21:08 
Аватара пользователя
provincialka

:facepalm: Даа вы правы, тогда подправлю:
$r_{2}(A,B)=R\theta$
$d=2Rsin(\frac{\theta}{2})$
где $\theta$ - центральный угол в радианах.
Тогда в общем виде получится:
$r_{1}(A,B)=2Rsin(\frac{r_{2}(A,B)}{2R})$

 
 
 [ Сообщений: 17 ]  На страницу 1, 2  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group