Задача такая:

- множество всех лучей пространства с общим началом
Докажите, что расстоянием на

можно назвать меру того угла между лучами, который не больше развернутого.
Постройте открытый круг радиуса

центром которого является некоторый фиксированный луч.
Под мерой я так думаю, понимают градусную меру межу лучами.
С первыми двумя аксиомами все понятно, а вот аксиома треугольника..
Обозначим

эти лучи.
Я начал рассматривать случаи:
1) Все три луча лежат в одной плоскости, тут, вроде, все понятно, если

луч находится между

то расстояние через него в

равно расстоянию напрямую, если нет - то больше.
2) Если все три лежат в разных плоскостях, то получается они взаимно перпендикулярны и расстояние больше - выполняется
3) А вот теперь когда пара каких-то лежат в одной плоскости, а другой нет, то я что-то никак не придумаю что делать. Буду очень рад, если кто-нибудь подскажет. Никаких примечательных фактов про этот случай я не нашел.
А про вторую часть: это же такой конус получается, уходящий в бесконечность ?