Да не надо никаких адресов в ЛС, держите:
http://rghost.ru/60145621-- 05.01.2015 11:05:51 --Может, чисто психологическая кажимость: кажется, что от понятия определителя до матрицы один крохотный шаг. И кажется, что для решения нетривиальных систем методом Гаусса нужна таблица коэффицентов СЛУ, т.е. матрица. Систему из двух уравнений с двумя неизвестными, конечно же, можно решать по-школьному подстановкой, но для систем большего размера удобство таблицы кажется очевидным.
Ну да. В истории науки такое часто бывает: что-то кажется очевидным, после того, как оно уже сделано. А поначалу - не-е-е.
Я тут прикинул, в современной математике понятие определителя породило аж несколько понятий: матрица, форма объёма... Поначалу они были слившимся воедино нечтом, и хотя уже в таком виде могли применяться и приносить много пользы, но хирургически точно разделить их на несколько понятий - это был шаг весьма нетривиальный. Вообще в 19 веке очень постепенно вырабатывалась идея, что
набор чисел тоже может быть самостоятельным алгебраическим объектом, да и само понятие
алгебры постепенно вылуплялось из единственной богом данной алгебры чисел, во множество различных алгебр и алгебро-подобных конструкций. В этом процессе поучаствовали, не в хронологическом порядке:
- булева алгебра, она же алгебра логики;
- комплексные и гиперкомплексные числа, постепенно осознанные как алгебраические системы; прежде всего - кватернионы, а потом прорвало;
- те же кватернионы породили (уже на излёте 20 века) отдельное понятие вектора, которое оказалось невероятно мощным и универсальным, но потом; поначалу с ним работали очень потихоньку;
- медленно и подспудно зарождалось представление о тензорах, поначалу в физике: в кристаллографии, в теории упругости;
- параллельно развивалась теория Грассмана "исчисление внешних форм", которая в конечном счёте оказалась во многом дубликатом теории векторов и тензоров.
Все эти вещи происходили весьма постепенно и размеренно, и даже если что-то и появлялось в начале века, то не сразу исследовалось на полную катушку, а довольно долго воспринималось как маргинальная диковина, не инструмент, а экспонат кунсткамеры. И только к концу века, и особенно к рубежу 19-20 веков, произошла смена парадигмы: аксиоматический метод позволил отнестись к этим вещам как к явлениям одной природы, оставить сомнения и стеснения, и начать использовать, тем более что от физики поступили запросы: на 4-мерные векторы и тензоры, потом на
-мерные векторы и матрицы, да и в математике теория собственных колебаний требовала такого же аппарата. А потом уже пришли Бурбаки и навели порядок, разложив всё на кирпичики алгебраических структур, как это сейчас во всех учебниках излагается.