Ну, я в школе не преподавал (не считая кружка в подшефном интернате, и тот по программированию), и попробую представить, как объяснял бы своим детям (а применительно к учителю - наверно, это объяснение для кружка, на уроках просто времени нет).
Число e выросло из практической задачи - вычислений. При ручном счёте сложение много проще умножения (при компьютерном, собственно, тоже, но это глубоко спрятано в процессоре

) И (известное к этому времени детям) соотношение

позволяет заменить сложную операцию более простой, если только научиться подбирать такие x, y, чтобы

и

. Тут я бы показал на степенях 10, потом пояснил бы, что степени двойки тоже работают, и дают более частую сетку, но, чтобы практически работало, надо взять a чуть больше единицы.

, и рассказал бы о том, что Непер взял 1.0000001 и построил таблицу. Сильно облегчившую жизнь вычислителей. Но тут сразу возникает вопрос, какой эпсилон взять и, главное, разные значения не приведут ли к принципиально разным результатам. И вот тут-то рассказать о Замечательном Пределе, объяснив, что Непер построил, по сути, приближение к

и обратные к этой функции натуральные логарифмы. Потом оказалось, что для собственно вычислений удобнее логарифмы десятичные, но у экспоненты обнаружились приятные свойства для матанализа,

(тут может быть уместно анекдот рассказать, про сумасшедших студентов-математиков).