salang Вы читали вводный курс?
читал, но не все понял.
Как узнать значение в нуле для второго графика?
Первый график не может быть прямой линией. Там, как минимум, кривая второго порядка
Код:
[math]$In[49]:= Clear[c, t, h, eta, r, k0, lambda, del, d, zeta, d0, \
thetaint, thetastart, theta, thetaw, kinc]
s = 1;
ns = 10^(-9);
c = 2.99792458 10^8;
h = 720000;
r = 6380000;
eta = 1 + h/r;
lambda = c/( 13.575 10^9);
k0 = 2 Pi/lambda;
del = 7200./18182;
zeta = Pi/(64 k0 del);
d0 = 4096
bandwidth = 320000000.;
res = 1/bandwidth;
sigma = Sqrt[(s/2 c)^2 + 0.513 res^2];
gammabar = 0.012215368000378016`;
gammahat = 0.0381925958945466`;
gamma1 = Sqrt[2/(2/gammabar^2 + 2/gammahat^2)];
gamma2 = Sqrt[2/(2/gammabar^2 - 2/gammahat^2)];
beta = Pi/2;
baseline = 1.1676;
gainsqr[roe_, thetaw_] :=
Exp[-2 ( ((roe Cos[thetaw])/gamma1)^2 + ((roe Sin[thetaw])/gamma2)^2)]
pulse[t_] := If[t == 0, 1, (Sin[Pi t/res]/(Pi t/res))^2]
rough0[t_, sigma_] := 1/(Sqrt[2 Pi] sigma) Exp[-(1/2) (t/sigma)^2]
knrange = 31;
knmid = 3;
istart = -50;
iend = 180;
zetab = 500/h;
npoints = (iend - istart)/0.1;
nsigma = 25;
sigmaint = 0.10;
icre = 1.0;
Out[60]= 4096
In[82]:= 1.49896229`*^8
PlotRange -> {0, 3 10^(-8)}
Out[82]= 1.49896*10^8
In[95]:=
p1[t_] :=
Exp[-t/(4 sigma^2)] ParabolicCylinderD[-0.5, t] Exp[-0.0074 t]
Plot[p1[t], {t, 0, 20 10^(-7)}, PlotRange -> {0, 3}]
Out[96]= \!\(\*
GraphicsBox[{{}, {},
{Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
1:eJwdzG0wEwAcx/ElhyTX0dgdY9Q5KUwPCPsjous651ySJA81VkKO8aJoniqN
04hYps2aaIsieRjbWKmOUrl2SaQ6Zx7qPM9llH8vfve9z5ufTWxyCF2HQCC4
bQybG9Fe5/PHjqZHmaX9YC54x4g3F7JMj0DzUowX+li5VJJpGgpn+wY90DK2
Oe2qKR1a0lvd0JYzqcNxy0wwUa1Q0et5/Z/uB7PAViBxQCdkBGf6sfPB3Yi1
Cy2umh4448aG9Wtvyehv1SZmgb63IT2qyBz9wUBaybUuBV7gq+3o7F2WXQWz
ZdA3QDFEW2QdH9flVIBEObMZbZVi8NPj4j3wUuxb+75hw5rSca1JNWTZTy+j
I3qm/RzD+PCSqpxF01mD1w51C0DuS5xCnx+xlW01FQJDNvQTba7vHu+Z/QC6
/Ugj6EcFu8fa1CLYeSFdhXYR50Ro3R6C65+A9+jESoEvT1gHmlLOGzTPzt5B
V1MPCZVBSnQOKy3zdZwYih/md6ID9vP4XwYk0BH6tQX9N8+xt4nSAHeTRY3o
S8Lck+qiRrAtUdeh457wF1NSnkA0pboGfV36S1ROegqioNQqNOExz2jq7VOo
zO8pQy8lZqdRMprA2z6vGO1PfM3Jd2qGskH5TbTOpLac86MZFqwsctCehXQe
69Yz2KRSX0G/I7qEV/u0gKKMykQPJ1HN7k+1gHP3VBL61CJZGsB5DrWFLxho
5+gkIjmgFfqjSbFo1r35y6rfrVDLH41A7+0aypaJ2sBp0ioUHdKwWFoQ3A4M
3ocgtLpvrWhV0w51c8Kj6M8DF2hVjzuAGzTriz4s3PLbOkwKnuaNnmi9SKMT
H407oVg9cQDt4bcm2KPshIlwH6f/fys2c/EJXTDvutUePXenfumjjQwklsE2
6DQCfZXSLwNSkr4FOr7CeJKYKgd21OgO9Gn2tl7LHQpoCHc2RkOTI4nPUECu
fF4frU8eWznIUoCt40E99PsbJUN9dxUg52boornz/h0xjQo4Y9Chgz4XqeFq
ehWwytQS0P8AbePQdg==
"]]}},
AspectRatio->0.6180339887498948,
Axes->True,
AxesLabel->{None, None},
AxesOrigin->{0, 0},
Method->{},
PlotRange->{{0, 2.*^-6}, {0, 3}},
PlotRangeClipping->True,
PlotRangePadding->{
Scaled[0.02], Automatic}]\)
In[111]:=
p2[t_] :=
Sqrt[2 sigma/res] (Exp[-0.25 t^2/sigma^2] ParabolicCylinderD[-1.5,
t/sigma])
Plot[p2[t], {t, 0, 2.0 10^(-7)}]
Out[112]= \!\(\*
GraphicsBox[{{}, {},
{Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
1:eJxTTMoPSmViYGBwAmIQnVlzPPhs4iebbx1zjtiWb3XMXa3flXJHwQ7GN7wm
lJJ8xwDO91I+/Oj1REc4/z+7SNhMKS84X+Xnzb+mNoFwvrJX583HR0Ph/FTD
ljBupig4/0tQYWSjb4zdVyi/uSQu5vuMODh/z+r3obdzEuB8M9kNf616E+F8
r9PXZM2XJ8P5Puq5TVPfpcL5+X4rtxvwZ8D5380qLUVVs+D83LM7/kdn5MD5
LPrzpt1vyYPzj23zaLm0Mt/uC5TvMv/njqT0Aji/7vLnJr3vCP5O9nc+v9oK
4fx9oaaeBpOL4PxdVVvSxbcVw/nurW3v5hwtgfNPpU2Yfvl1KZzPoPnk2Tqe
cjj/2IWueRpSFXC+ikAVt92aCrvPsPDzz6wItquE81cxNknuOIbgX9w8a5eM
fxWC/0N0cVdUNZx/QuTk2pU1NXB+j6hPOgdLrd0nKD9A7LxCejeC38+Uly0n
Vwfnn3vHs+3qBgT///IpH19cqIfzExdv9zqb1wDn2947sLaOoRHOf9j92aW+
A8G/r+mtf4m3Cc6f847lrXoYgh+xed+q2nlNdh+g/ArDXqbfDxH8meujoypU
m+H8sOkis09vR/Bvf/zGn+fQAufvtPl3PekYgi9crGi4IbwVzjeVydvncx/B
v7Th2h3HojY436947tTUXQj+SdMUv06mdrv3UP6KjfYLr7gi+B260l/kOxH8
QwLvtPilO+D8o2mvpvouRvAV13KH3NPohPN53Fb9DirstHsH5f+457H4+E4E
38Pwz5Pkvwj+9Ob1agyOXXC+1DLZmMoeBH/eie6Jn64j+AB3NSGQ
"]]}},
AspectRatio->0.6180339887498948,
Axes->True,
AxesLabel->{None, None},
AxesOrigin->{0, 3.601361326114638*^8},
Method->{},
PlotRange->{{0, 2.*^-7}, {3.601361326114644*^8,
3.6013613261146486`*^8}},
PlotRangeClipping->True,
PlotRangePadding->{
Scaled[0.02],
Scaled[0.02]}]\)
In[88]:= Plot[{ParabolicCylinderD[-1.5, t],
ParabolicCylinderD[-0.5, t]}, {t, 0, 2 10^(-6)},
PlotStyle -> {Red, Black}, PlotRange -> {0, 1.3}]
Out[88]= \!\(\*
GraphicsBox[{{}, {},
{RGBColor[1, 0, 0], LineBox[CompressedData["
1:eJwdzH0w0wEcx/EdrlSjzpp0UdappITiyPKNPHXqLqeiQhGjEuUoXYUfMTGO
GWI1T/PY5iGRh9n6FTmlEo4Ll1BqUS7LzEXKtz8+977XPx/G+SseLDUKhcJc
HvaOd3OF/e/tdgNjGS1cvuJgej/PjU2zAgvJXBPaX6SeStCcIS3LpxHtliMR
R9NOgpOrcT1axtlgd5vGggbx0yq0/veI4aC5a+B8Y6gAvZTwur/AnYCWpdFM
dEiUe7QjJxFqxcZstOjBVLePNQe8vH1uoD/m6+i6OmTA5/ZbIegeTUkefwsP
jMySfNFxRvrS5J/Z8JnsO4beFHN0QoObC4laVEf05nDNT7aX7sPHM+ZW6NXF
vIlFnXzYGGBvjPZ+PuVo6lUI7zK5m9Asoi92/7MisG97q4UO/LBVtoYmhPRq
FQW9YaVNMDOuBPL41F8Zy36YvHO0SV4KjOrzE2gLUbz3onU5sG+XvEeH5hU5
CIQVUH6k9xVasN3YRENVCSX9U1J0PBEZ3RkkAj+/mRq0yz5B4VC3GPJ0bIrR
fxNMO+oMq0EceykbfVl4x1OeVgMxP+4moYNqC2fDw2thly7vJpot+VGao/cI
PIJGQtGUKgF18s0jYDbS/dDK0LhIw6g6WHxucxztRO/kJu55DES3qzNa7dti
Dnd82eq51mhmKktApNSDp6LPBP2WbnE6374BFGML+ujhMHPdgskG8E9duw59
atZA4sJ9Am5nA9XRZn5hdAOXRlgwL1WmL5u4r7g6MN0IsbIeOXq3dDBOVtoE
XUcnh9Ae1bO8ZPdmkGdPv0HLu/6kLaiagVhh+Qz9vvui3YOqFhiPYj1GHxKu
mt7iJYH1JfFl6BW+1BO92q1A6+Hkom0d/xTtamuF1G0DKf//5hkzwSFS6LGk
xqBnsiqVvQwZfHHacxUdSWEtGL6WQefaAwHo4Fztb/SIp8BQ43iiz3C0OvTX
k3BE+eIwGupM9QovkHBQ+J2JLv7K1gyJJCGinGGLXmkwOm9FkFAm8rRBv0vK
HOy6R4J2PWmJtpJOvcwRkuDQpNyL5iucWvxrSLjeamKBXtqR/3C3hAQRec4M
HeCr4qs6SBhpzzJF/wO4s+x0
"]]},
{GrayLevel[0], LineBox[CompressedData["
1:eJwdzH0wEwAcxvFdrYzU1da8HDKFK3lJznnLz1t0nLqlsoqulJFQXoa6Q/Oe
pqtR3se8lcy7SixrveEabXSVKMKtw8pbNFdUfv3x3Pc+/zwGZy/5MNcQCASb
1WFT/NqqnX8ZO5Jos45jMT+cAgRrs9gUd2hQOb8P7ZUrrE2gHINjMyP2aBFH
0zGewoRykdQGrfsteijoZwy8jNhtif6T2vOulM4Gkkxpgg6Noye4cdJg/Mi4
IVpQrJD623DAU+G1DT1SQtY44HILpBY7tNB9JGFBoX4ODGfEbUEnGep2ZM7e
gXSiQg2tk+gtJ3LzgW4uJaK3RZLG7S8UQXmoxZ/RVauV58iXySVA9SUsof2e
K9zMGHygMWfn0Ez226t2z8rgUYa/Ah34ebtoA6UCQhl2crSmim2wQ1Il1Nhn
D6NrMnd9eTxRBSmuagNoS0Gy37LNPYhXzvehwwvKXHgV1bDylCFB84x3mhCV
94FvbfYKncxmJXQHCUAiShShPax4/EFpLXDDZlrRf1PNOptp9RDXJWtCh1Wk
+E7caAC5tbkAHdTIX4iMbATW4eVKdLrwe1WuVhPwuJMlaEIdT32qtwkOyX3y
0YvhSSxaXDPQvppmo/dTu7lp5i0Q/yuZg14zuZzLHWuBSKulVLRDFpPHvv4A
0rWHE9FvqJYnSpwfghHF+TJ66OIejdKphzDeRo5CH1/QE3pwH4FDGjEMbXHm
IlXPoxV0A6OYaHbRfMT76VbQn6WfRpt2fEwSVT2GmpuC42if+oWcTHob+H6K
9UFPSFZu/Fa2QeHBAG/0gDTEsbiuHUL6u9zRrhWq0/oMITCIpU7o9afUj/Zv
egIyz3lbtL3bStnuF09gtCVw7/+/JYO54NAOIEsOmKLnbt9f7DcQQe/iXSM0
i8D8TesRQXVvrD46OH/TJDX6Kei9ZmqjT3I2dupuFYPOoIyMhmYzLf55Mdjl
1aqjVfS+LFmzxfBBuqiGlmVkf5TkiYFFclJFF87vbw9oEMNml2sq6HOnlIXK
TjHUX+lbh/4HwoHOow==
"]]}},
AspectRatio->0.6180339887498948,
Axes->True,
AxesLabel->{None, None},
AxesOrigin->{0, 0},
Method->{},
PlotRange->{{0, 2.*^-6}, {0, 1.3}},
PlotRangeClipping->True,
PlotRangePadding->{
Scaled[0.02], Automatic}]\)$[/math]