исправил:
http://zalil.su/?fg=112234На первых двух графиках сообщений об ошибках теперь нет, но и самих кривых тоже нет
Как-то возможно узнать какой цвет соответствует какой функции на последнем графике?
Код:
[math]$Clear[c, t, h, eta, r, k0, lambda, del, d, zeta, d0, thetaint, \
thetastart, theta, thetaw, kinc]
s = 1
ns = 10^(-9);
c = 2.99792458 10^8;
h = 720000;
r = 6380000;
eta = 1 + h/r;
lambda = c/( 13.575 10^9);
k0 = 2 Pi/lambda;
del = 7200./18182;
zeta = Pi/(64 k0 del);
d0 = 4096
bandwidth = 320000000.;
res = 1/bandwidth;
sigma = Sqrt[(s/2 c)^2 + 0.513 res^2]
gammabar = 0.012215368000378016`;
gammahat = 0.0381925958945466`;
gamma1 = Sqrt[2/(2/gammabar^2 + 2/gammahat^2)];
gamma2 = Sqrt[2/(2/gammabar^2 - 2/gammahat^2)];
beta = Pi/2;
baseline = 1.1676;
gainsqr[roe_, thetaw_] :=
Exp[-2 ( ((roe Cos[thetaw])/gamma1)^2 + ((roe Sin[thetaw])/gamma2)^2)]
pulse[t_] := If[t == 0, 1, (Sin[Pi t/res]/(Pi t/res))^2]
rough0[t_, sigma_] := 1/(Sqrt[2 Pi] sigma) Exp[-(1/2) (t/sigma)^2]
knrange = 31;
knmid = 3;
istart = -50;
iend = 180;
zetab = 500/h;
npoints = (iend - istart)/0.1;
nsigma = 25;
sigmaint = 0.10;
icre = 1.0;
1
4096
1.49896*10^8
p1[t] = exp[-t/(4 sigma^2)] ParabolicCylinderD[-0.5, t] exp[-0.0074 t]
Plot[p1[t], {t, 0, 2.0 10^(-7)}, PlotRange -> {0, 3 10^(-8)}]
exp[-0.0074 t] exp[-1.11265*10^-17 t] ParabolicCylinderD[-0.5, t]
\!\(\*
GraphicsBox[{},
AspectRatio->0.6180339887498948,
Axes->True,
AxesLabel->{None, None},
AxesOrigin->{0, 0},
Method->{},
PlotRange->{{0, 2.*^-7}, {0, 3.*^-7}},
PlotRangeClipping->True,
PlotRangePadding->{
Scaled[0.02], Automatic}]\)
p2[t] = Sqrt[
2 sigma/res] (exp[-0.25 t^2/sigma^2] ParabolicCylinderD[-1.5,
t/sigma])
Plot[p2[t], {t, 0, 2.0 10^(-7)}, PlotRange -> {0, 3 10^(-8)}]
3.09731*10^8 exp[-1.11265*10^-17 t^2] ParabolicCylinderD[-1.5,
6.67128*10^-9 t]
\!\(\*
GraphicsBox[{},
AspectRatio->0.6180339887498948,
Axes->True,
AxesLabel->{None, None},
AxesOrigin->{0, 0},
Method->{},
PlotRange->{{0, 2.*^-7}, {0, 3.*^-8}},
PlotRangeClipping->True,
PlotRangePadding->{
Scaled[0.02], Automatic}]\)
Plot[{ParabolicCylinderD[-1.5, t], ParabolicCylinderD[-0.5, t]}, {t,
0, 2 10^(-6)}, ColorFunction -> Automatic, PlotRange -> {0, 1.4}]
\!\(\*
GraphicsBox[{{}, {},
{Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
1:eJwdzH0w0wEcx/EdrlSjzpp0UdappITiyPKNPHXqLqeiQhGjEuUoXYUfMTGO
GWI1T/PY5iGRh9n6FTmlEo4Ll1BqUS7LzEXKtz8+977XPx/G+SseLDUKhcJc
HvaOd3OF/e/tdgNjGS1cvuJgej/PjU2zAgvJXBPaX6SeStCcIS3LpxHtliMR
R9NOgpOrcT1axtlgd5vGggbx0yq0/veI4aC5a+B8Y6gAvZTwur/AnYCWpdFM
dEiUe7QjJxFqxcZstOjBVLePNQe8vH1uoD/m6+i6OmTA5/ZbIegeTUkefwsP
jMySfNFxRvrS5J/Z8JnsO4beFHN0QoObC4laVEf05nDNT7aX7sPHM+ZW6NXF
vIlFnXzYGGBvjPZ+PuVo6lUI7zK5m9Asoi92/7MisG97q4UO/LBVtoYmhPRq
FQW9YaVNMDOuBPL41F8Zy36YvHO0SV4KjOrzE2gLUbz3onU5sG+XvEeH5hU5
CIQVUH6k9xVasN3YRENVCSX9U1J0PBEZ3RkkAj+/mRq0yz5B4VC3GPJ0bIrR
fxNMO+oMq0EceykbfVl4x1OeVgMxP+4moYNqC2fDw2thly7vJpot+VGao/cI
PIJGQtGUKgF18s0jYDbS/dDK0LhIw6g6WHxucxztRO/kJu55DES3qzNa7dti
Dnd82eq51mhmKktApNSDp6LPBP2WbnE6374BFGML+ujhMHPdgskG8E9duw59
atZA4sJ9Am5nA9XRZn5hdAOXRlgwL1WmL5u4r7g6MN0IsbIeOXq3dDBOVtoE
XUcnh9Ae1bO8ZPdmkGdPv0HLu/6kLaiagVhh+Qz9vvui3YOqFhiPYj1GHxKu
mt7iJYH1JfFl6BW+1BO92q1A6+Hkom0d/xTtamuF1G0DKf//5hkzwSFS6LGk
xqBnsiqVvQwZfHHacxUdSWEtGL6WQefaAwHo4Fztb/SIp8BQ43iiz3C0OvTX
k3BE+eIwGupM9QovkHBQ+J2JLv7K1gyJJCGinGGLXmkwOm9FkFAm8rRBv0vK
HOy6R4J2PWmJtpJOvcwRkuDQpNyL5iucWvxrSLjeamKBXtqR/3C3hAQRec4M
HeCr4qs6SBhpzzJF/wO4s+x0
"]]},
{Hue[0.9060679774997897, 0.6, 0.6], LineBox[CompressedData["
1:eJwdzH0wEwAcxvFdrYzU1da8HDKFK3lJznnLz1t0nLqlsoqulJFQXoa6Q/Oe
pqtR3se8lcy7SixrveEabXSVKMKtw8pbNFdUfv3x3Pc+/zwGZy/5MNcQCASb
1WFT/NqqnX8ZO5Jos45jMT+cAgRrs9gUd2hQOb8P7ZUrrE2gHINjMyP2aBFH
0zGewoRykdQGrfsteijoZwy8jNhtif6T2vOulM4Gkkxpgg6Noye4cdJg/Mi4
IVpQrJD623DAU+G1DT1SQtY44HILpBY7tNB9JGFBoX4ODGfEbUEnGep2ZM7e
gXSiQg2tk+gtJ3LzgW4uJaK3RZLG7S8UQXmoxZ/RVauV58iXySVA9SUsof2e
K9zMGHygMWfn0Ez226t2z8rgUYa/Ah34ebtoA6UCQhl2crSmim2wQ1Il1Nhn
D6NrMnd9eTxRBSmuagNoS0Gy37LNPYhXzvehwwvKXHgV1bDylCFB84x3mhCV
94FvbfYKncxmJXQHCUAiShShPax4/EFpLXDDZlrRf1PNOptp9RDXJWtCh1Wk
+E7caAC5tbkAHdTIX4iMbATW4eVKdLrwe1WuVhPwuJMlaEIdT32qtwkOyX3y
0YvhSSxaXDPQvppmo/dTu7lp5i0Q/yuZg14zuZzLHWuBSKulVLRDFpPHvv4A
0rWHE9FvqJYnSpwfghHF+TJ66OIejdKphzDeRo5CH1/QE3pwH4FDGjEMbXHm
IlXPoxV0A6OYaHbRfMT76VbQn6WfRpt2fEwSVT2GmpuC42if+oWcTHob+H6K
9UFPSFZu/Fa2QeHBAG/0gDTEsbiuHUL6u9zRrhWq0/oMITCIpU7o9afUj/Zv
egIyz3lbtL3bStnuF09gtCVw7/+/JYO54NAOIEsOmKLnbt9f7DcQQe/iXSM0
i8D8TesRQXVvrD46OH/TJDX6Kei9ZmqjT3I2dupuFYPOoIyMhmYzLf55Mdjl
1aqjVfS+LFmzxfBBuqiGlmVkf5TkiYFFclJFF87vbw9oEMNml2sq6HOnlIXK
TjHUX+lbh/4HwoHOow==
"]]}},
AspectRatio->0.6180339887498948,
Axes->True,
AxesLabel->{None, None},
AxesOrigin->{0, 0},
Method->{},
PlotRange->{{0, 2.*^-6}, {0, 1.4}},
PlotRangeClipping->True,
PlotRangePadding->{
Scaled[0.02], Automatic}]\)$[/math]