Если кому любопытно, то я полюбопытствовал (в недрах винчестера), когда читал этот курс последний раз. Оказалось, что чуть более трёх лет назад. Вот список экзаменационных вопросов (вполне согласованных с порядком прочтения):
Цитата:
1. Определение комплексного числа. Алгебраическая форма записи.
2. Модуль комплексного числа и комплексное сопряжение, их свойства. Деление комплексных чисел.
3. Полярные координаты на плоскости и их связь с декартовыми.
4. Тригонометрическая форма записи комплексного числа. Свойства модуля и аргумента.
5. Формулы Муавра для возведения в степень и извлечения корня из комплексного числа.
6. Формула Эйлера. Показательная форма записи комплексного числа.
7. Гиперболические функции и их свойства.
8. Многочлены и действия над ними. Деление многочленов с остатком. Теорема Безу.
9. Кратность корня многочлена и её связь с производными.
10. Основная теорема алгебры (теорема Гаусса). Разложение многочлена на вещественные и на комплексные множители.
11. Матрицы и линейные операции над ними. Транспонирование.
12. Решение систем линейных уравнений методом Гаусса.
13. Формулы Крамера для систем линейных уравнений 2-го порядка. Определители 2-го порядка и их свойства.
14. Аксиоматическое определение определителя и его простейшие свойства.
15. Перестановки. Обратная перестановка, транспозиции, чётность перестановки.
16. Общая формула для определителя произвольного порядка. Определитель транспонированной матрицы.
17. Разложение определителя по строке (столбцу).
18. Теорема о сумме произведений элементов строки на алгебраические дополнения другой строки.
19. Вычисление определителя методом Гаусса. Определитель треугольной матрицы.
20. Формулы Крамера для систем линейных уравнений произвольного порядка.
21. Умножение матриц и его свойства. Матричная запись системы линейных уравнений.
22. Определитель произведения матриц.
23. Обратная матрица и её свойства.
24. Вычисление обратной матрицы с помощью алгебраических дополнений.
25. Решение матричных уравнений. Нахождение обратной матрицы методом Гаусса.
26. Векторная алгебра: линейные операции над векторами, скалярное произведение.
27. Проекция вектора на ось и компонента на оси, их связь между собой и со скалярным произведением.
28. Доказательство линейности скалярного произведения. Координатное представление скалярного произведения.
29. Векторное произведение: геометрическое определение, простейшие свойства.
30. Смешанное произведение и его свойства. Правые и левые тройки векторов.
31. Доказательство линейности векторного произведения.
32. Правые и левые системы декартовых координат. Координатные представления для векторного и смешанного произведений.
33. Двойное векторное произведение. Неассоциативность векторного произведения.
34. Уравнения плоскости в пространстве: общее, через три точки, в отрезках.
35. Нормальное уравнение плоскости. Расстояние от точки до плоскости.
36. Уравнения прямой в пространстве: общие, канонические, параметрические, связь между ними.
37. Эллипс и его уравнение в полярных координатах.
38. Гипербола и её уравнение в полярных координатах.
39. Парабола и её уравнение в полярных координатах.
40. Преобразования координат на плоскости: сдвиг, отражение, поворот.
41. Приведение уравнения кривой второго порядка к каноническому виду.
42. Уравнения эллипса, параболы и гиперболы в полярных координатах.
43. Поверхности второго порядка: эллипсоид, гиперболоиды, конус.
44. Поверхности второго порядка: параболоиды, цилиндры.
45. Линейная независимость строк матрицы и её связь с определителем в случае квадратной матрицы.
46. Определение ранга матрицы через миноры и его связь с линейной независимостью строк (столбцов).
47. Теорема Кронекера-Капелли.
Пара комментариев.
1). 12-й вопрос -- про метод Гаусса -- на лекциях отнял довольно много времени, практически целую лекцию, но в экзаменационные билеты фактически не включался, слишком много там было размахиваний руками (практически очевидных) и маловато того, что можно компактно формализовать.
2). Последние три вопроса -- вставлены лишь для порядка (в билеты опять же не включались), т.к. последняя лекция вообще читалась лишь в качестве добивки, для моральной подготовки ребят к более серьёзному курсу ЛА в следующем семестре. Который предполагалось читать уже не мне (как и случилось).
Пардон. Только сейчас (спустя три с половиной года) заметил: в вопросы 37-39 вкралась никому не нужная полярность. И что занятно -- никто из студентов тоже даже и внимания на это не обратил, все отвечали по существу. Т.е. в соответствии с конспектным упорядочением параграфов.