У меня получилось так:
![$% MathType!MTEF!2!1!+-
% feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaacI
% cacaWGWbGaaiykaiabg2da9maalaaabaGaamyvamaaBaaaleaacaWG
% 2bGaamyAaiaadIgacaWGVbGaamizaaqabaGccaGGOaGaamiCaiaacM
% caaeaacaWGvbWaaSbaaSqaaiaadAhacaWGObGaam4Baiaadsgaaeqa
% aOGaaiikaiaadchacaGGPaaaaiabg2da9maalaaabaGaaGymaaqaai
% aadchadaahaaWcbeqaaiaaikdaaaGccqGHflY1caWGdbWaaSbaaSqa
% aiaaigdaaeqaaOGaeyyXICTaam4qamaaBaaaleaacaaIYaaabeaaki
% abgwSixlaadkfadaWgaaWcbaGaaGymaaqabaGccqGHflY1caWGsbWa
% aSbaaSqaaiaaiodaaeqaaOGaey4kaSIaamiCaiabgwSixlaadoeada
% WgaaWcbaGaaGymaaqabaGcdaqadaqaaiaadkfadaWgaaWcbaGaaG4m
% aaqabaGccqGHRaWkdaWcaaqaaiaadkfadaWgaaWcbaGaaGymaaqaba
% GccqGHflY1caWGsbWaaSbaaSqaaiaaiodaaeqaaaGcbaGaamOuamaa
% BaaaleaacaaIYaaabeaaaaGccqGHRaWkcaWGsbWaaSbaaSqaaiaaig
% daaeqaaaGccaGLOaGaayzkaaGaey4kaSYaaSaaaeaacaWGsbWaaSba
% aSqaaiaaigdaaeqaaaGcbaGaamOuamaaBaaaleaacaaIYaaabeaaaa
% GccqGHRaWkcaaIXaaaaaaa!77F2!
\[K(p) = \frac{{{U_{vihod}}(p)}}{{{U_{vhod}}(p)}} = \frac{1}{{{p^2} \cdot {C_1} \cdot {C_2} \cdot {R_1} \cdot {R_3} + p \cdot {C_1}\left( {{R_3} + \frac{{{R_1} \cdot {R_3}}}{{{R_2}}} + {R_1}} \right) + \frac{{{R_1}}}{{{R_2}}} + 1}}\]$ $% MathType!MTEF!2!1!+-
% feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaacI
% cacaWGWbGaaiykaiabg2da9maalaaabaGaamyvamaaBaaaleaacaWG
% 2bGaamyAaiaadIgacaWGVbGaamizaaqabaGccaGGOaGaamiCaiaacM
% caaeaacaWGvbWaaSbaaSqaaiaadAhacaWGObGaam4Baiaadsgaaeqa
% aOGaaiikaiaadchacaGGPaaaaiabg2da9maalaaabaGaaGymaaqaai
% aadchadaahaaWcbeqaaiaaikdaaaGccqGHflY1caWGdbWaaSbaaSqa
% aiaaigdaaeqaaOGaeyyXICTaam4qamaaBaaaleaacaaIYaaabeaaki
% abgwSixlaadkfadaWgaaWcbaGaaGymaaqabaGccqGHflY1caWGsbWa
% aSbaaSqaaiaaiodaaeqaaOGaey4kaSIaamiCaiabgwSixlaadoeada
% WgaaWcbaGaaGymaaqabaGcdaqadaqaaiaadkfadaWgaaWcbaGaaG4m
% aaqabaGccqGHRaWkdaWcaaqaaiaadkfadaWgaaWcbaGaaGymaaqaba
% GccqGHflY1caWGsbWaaSbaaSqaaiaaiodaaeqaaaGcbaGaamOuamaa
% BaaaleaacaaIYaaabeaaaaGccqGHRaWkcaWGsbWaaSbaaSqaaiaaig
% daaeqaaaGccaGLOaGaayzkaaGaey4kaSYaaSaaaeaacaWGsbWaaSba
% aSqaaiaaigdaaeqaaaGcbaGaamOuamaaBaaaleaacaaIYaaabeaaaa
% GccqGHRaWkcaaIXaaaaaaa!77F2!
\[K(p) = \frac{{{U_{vihod}}(p)}}{{{U_{vhod}}(p)}} = \frac{1}{{{p^2} \cdot {C_1} \cdot {C_2} \cdot {R_1} \cdot {R_3} + p \cdot {C_1}\left( {{R_3} + \frac{{{R_1} \cdot {R_3}}}{{{R_2}}} + {R_1}} \right) + \frac{{{R_1}}}{{{R_2}}} + 1}}\]$](https://dxdy-03.korotkov.co.uk/f/e/e/b/eeb761f0c01178a0fad3e6cc193aec1082.png)
Дальше нужно сделать все тоже самое, но методом сигнальных графов. Ну и найти значения всех элементов.
Значения элементов я искал так. Из сопоставления полученной передаточной функции с типовой:
![$% MathType!MTEF!2!1!+-
% feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
% WGlbWaaSbaaSqaaiaadwfaaeqaaOGaeyyXICTaam4qaiaad6gadaWg
% aaWcbaGaaGymaaqabaGccqGHflY1cqaHjpWDdaWgaaWcbaGaam4qaa
% qabaGcdaahaaWcbeqaaiaaikdaaaaakeaacaWGWbWaaWbaaSqabeaa
% caaIYaaaaOGaey4kaSIaamOqaiaad6gadaWgaaWcbaGaaGymaaqaba
% GccqGHflY1cqaHjpWDdaWgaaWcbaGaam4qaaqabaGccqGHflY1caWG
% WbGaey4kaSIaam4qaiaad6gadaWgaaWcbaGaaGymaaqabaGccqGHfl
% Y1cqaHjpWDdaWgaaWcbaGaam4qaaqabaGcdaahaaWcbeqaaiaaikda
% aaaaaOGaeyypa0ZaaSaaaeaadaWccaqaaiaaigdaaeaacaWGdbWaaS
% baaSqaaiaaigdaaeqaaOGaeyyXICTaam4qamaaBaaaleaacaaIYaaa
% beaakiabgwSixlaadkfadaWgaaWcbaGaaGymaaqabaGccqGHflY1ca
% WGsbWaaSbaaSqaaiaaiodaaeqaaaaaaOqaaiaadchadaahaaWcbeqa
% aiaaikdaaaGccqGHRaWkdaWcaaqaaiaadchaaeaacaWGdbWaaSbaaS
% qaaiaaikdaaeqaaOGaeyyXICTaamOuamaaBaaaleaacaaIXaaabeaa
% kiabgwSixlaadkfadaWgaaWcbaGaaG4maaqabaaaaOWaaeWaaeaaca
% WGsbWaaSbaaSqaaiaaiodaaeqaaOGaey4kaSYaaSaaaeaacaWGsbWa
% aSbaaSqaaiaaigdaaeqaaOGaeyyXICTaamOuamaaBaaaleaacaaIZa
% aabeaaaOqaaiaadkfadaWgaaWcbaGaaGOmaaqabaaaaOGaey4kaSIa
% amOuamaaBaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaaiabgUcaRm
% aalaaabaWaaSaaaeaacaWGsbWaaSbaaSqaaiaaigdaaeqaaaGcbaGa
% amOuamaaBaaaleaacaaIYaaabeaaaaGccqGHRaWkcaaIXaaabaGaam
% 4qamaaBaaaleaacaaIXaaabeaakiabgwSixlaadoeadaWgaaWcbaGa
% aGOmaaqabaGccqGHflY1caWGsbWaaSbaaSqaaiaaigdaaeqaaOGaey
% yXICTaamOuamaaBaaaleaacaaIZaaabeaaaaaaaaaa!9A75!
\[\frac{{{K_U} \cdot C{n_1} \cdot {\omega _C}^2}}{{{p^2} + B{n_1} \cdot {\omega _C} \cdot p + C{n_1} \cdot {\omega _C}^2}} = \frac{{{\raise0.7ex\hbox{$1$} \!\mathord{\left/
{\vphantom {1 {{C_1} \cdot {C_2} \cdot {R_1} \cdot {R_3}}}}\right.\kern-\nulldelimiterspace}
\!\lower0.7ex\hbox{${{C_1} \cdot {C_2} \cdot {R_1} \cdot {R_3}}$}}}}{{{p^2} + \frac{p}{{{C_2} \cdot {R_1} \cdot {R_3}}}\left( {{R_3} + \frac{{{R_1} \cdot {R_3}}}{{{R_2}}} + {R_1}} \right) + \frac{{\frac{{{R_1}}}{{{R_2}}} + 1}}{{{C_1} \cdot {C_2} \cdot {R_1} \cdot {R_3}}}}}\]$ $% MathType!MTEF!2!1!+-
% feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
% WGlbWaaSbaaSqaaiaadwfaaeqaaOGaeyyXICTaam4qaiaad6gadaWg
% aaWcbaGaaGymaaqabaGccqGHflY1cqaHjpWDdaWgaaWcbaGaam4qaa
% qabaGcdaahaaWcbeqaaiaaikdaaaaakeaacaWGWbWaaWbaaSqabeaa
% caaIYaaaaOGaey4kaSIaamOqaiaad6gadaWgaaWcbaGaaGymaaqaba
% GccqGHflY1cqaHjpWDdaWgaaWcbaGaam4qaaqabaGccqGHflY1caWG
% WbGaey4kaSIaam4qaiaad6gadaWgaaWcbaGaaGymaaqabaGccqGHfl
% Y1cqaHjpWDdaWgaaWcbaGaam4qaaqabaGcdaahaaWcbeqaaiaaikda
% aaaaaOGaeyypa0ZaaSaaaeaadaWccaqaaiaaigdaaeaacaWGdbWaaS
% baaSqaaiaaigdaaeqaaOGaeyyXICTaam4qamaaBaaaleaacaaIYaaa
% beaakiabgwSixlaadkfadaWgaaWcbaGaaGymaaqabaGccqGHflY1ca
% WGsbWaaSbaaSqaaiaaiodaaeqaaaaaaOqaaiaadchadaahaaWcbeqa
% aiaaikdaaaGccqGHRaWkdaWcaaqaaiaadchaaeaacaWGdbWaaSbaaS
% qaaiaaikdaaeqaaOGaeyyXICTaamOuamaaBaaaleaacaaIXaaabeaa
% kiabgwSixlaadkfadaWgaaWcbaGaaG4maaqabaaaaOWaaeWaaeaaca
% WGsbWaaSbaaSqaaiaaiodaaeqaaOGaey4kaSYaaSaaaeaacaWGsbWa
% aSbaaSqaaiaaigdaaeqaaOGaeyyXICTaamOuamaaBaaaleaacaaIZa
% aabeaaaOqaaiaadkfadaWgaaWcbaGaaGOmaaqabaaaaOGaey4kaSIa
% amOuamaaBaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaaiabgUcaRm
% aalaaabaWaaSaaaeaacaWGsbWaaSbaaSqaaiaaigdaaeqaaaGcbaGa
% amOuamaaBaaaleaacaaIYaaabeaaaaGccqGHRaWkcaaIXaaabaGaam
% 4qamaaBaaaleaacaaIXaaabeaakiabgwSixlaadoeadaWgaaWcbaGa
% aGOmaaqabaGccqGHflY1caWGsbWaaSbaaSqaaiaaigdaaeqaaOGaey
% yXICTaamOuamaaBaaaleaacaaIZaaabeaaaaaaaaaa!9A75!
\[\frac{{{K_U} \cdot C{n_1} \cdot {\omega _C}^2}}{{{p^2} + B{n_1} \cdot {\omega _C} \cdot p + C{n_1} \cdot {\omega _C}^2}} = \frac{{{\raise0.7ex\hbox{$1$} \!\mathord{\left/
{\vphantom {1 {{C_1} \cdot {C_2} \cdot {R_1} \cdot {R_3}}}}\right.\kern-\nulldelimiterspace}
\!\lower0.7ex\hbox{${{C_1} \cdot {C_2} \cdot {R_1} \cdot {R_3}}$}}}}{{{p^2} + \frac{p}{{{C_2} \cdot {R_1} \cdot {R_3}}}\left( {{R_3} + \frac{{{R_1} \cdot {R_3}}}{{{R_2}}} + {R_1}} \right) + \frac{{\frac{{{R_1}}}{{{R_2}}} + 1}}{{{C_1} \cdot {C_2} \cdot {R_1} \cdot {R_3}}}}}\]$](https://dxdy-02.korotkov.co.uk/f/1/c/5/1c5f56d523b465641cc4035c36b0a97d82.png)
![$% MathType!MTEF!2!1!+-
% feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGlb
% WaaSbaaSqaaiaadwfaaeqaaOGaeyyXICTaam4qaiaad6gadaWgaaWc
% baGaaGymaaqabaGccqGHflY1cqaHjpWDdaWgaaWcbaGaam4qaaqaba
% GcdaahaaWcbeqaaiaaikdaaaGccqGH9aqpdaWccaqaaiaaigdaaeaa
% caWGdbWaaSbaaSqaaiaaigdaaeqaaOGaeyyXICTaam4qamaaBaaale
% aacaaIYaaabeaakiabgwSixlaadkfadaWgaaWcbaGaaGymaaqabaGc
% cqGHflY1caWGsbWaaSbaaSqaaiaaiodaaeqaaaaaaOqaaiaadkeaca
% WGUbWaaSbaaSqaaiaaigdaaeqaaOGaeyyXICTaeqyYdC3aaSbaaSqa
% aiaadoeaaeqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaam4qamaaBa
% aaleaacaaIYaaabeaakiabgwSixlaadkfadaWgaaWcbaGaaGymaaqa
% baGccqGHflY1caWGsbWaaSbaaSqaaiaaiodaaeqaaaaakmaabmaaba
% GaamOuamaaBaaaleaacaaIZaaabeaakiabgUcaRmaalaaabaGaamOu
% amaaBaaaleaacaaIXaaabeaakiabgwSixlaadkfadaWgaaWcbaGaaG
% 4maaqabaaakeaacaWGsbWaaSbaaSqaaiaaikdaaeqaaaaakiabgUca
% RiaadkfadaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaaaeaaca
% WGdbGaamOBamaaBaaaleaacaaIXaaabeaakiabgwSixlabeM8a3naa
% BaaaleaacaWGdbaabeaakmaaCaaaleqabaGaaGOmaaaakiabg2da9m
% aalaaabaWaaSaaaeaacaWGsbWaaSbaaSqaaiaaigdaaeqaaaGcbaGa
% amOuamaaBaaaleaacaaIYaaabeaaaaGccqGHRaWkcaaIXaaabaGaam
% 4qamaaBaaaleaacaaIXaaabeaakiabgwSixlaadoeadaWgaaWcbaGa
% aGOmaaqabaGccqGHflY1caWGsbWaaSbaaSqaaiaaigdaaeqaaOGaey
% yXICTaamOuamaaBaaaleaacaaIZaaabeaaaaaaaaa!9198!
\[\begin{array}{l}
{K_U} \cdot C{n_1} \cdot {\omega _C}^2 = {\raise0.7ex\hbox{$1$} \!\mathord{\left/
{\vphantom {1 {{C_1} \cdot {C_2} \cdot {R_1} \cdot {R_3}}}}\right.\kern-\nulldelimiterspace}
\!\lower0.7ex\hbox{${{C_1} \cdot {C_2} \cdot {R_1} \cdot {R_3}}$}}\\
B{n_1} \cdot {\omega _C} = \frac{1}{{{C_2} \cdot {R_1} \cdot {R_3}}}\left( {{R_3} + \frac{{{R_1} \cdot {R_3}}}{{{R_2}}} + {R_1}} \right)\\
C{n_1} \cdot {\omega _C}^2 = \frac{{\frac{{{R_1}}}{{{R_2}}} + 1}}{{{C_1} \cdot {C_2} \cdot {R_1} \cdot {R_3}}}
\end{array}\]$ $% MathType!MTEF!2!1!+-
% feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGlb
% WaaSbaaSqaaiaadwfaaeqaaOGaeyyXICTaam4qaiaad6gadaWgaaWc
% baGaaGymaaqabaGccqGHflY1cqaHjpWDdaWgaaWcbaGaam4qaaqaba
% GcdaahaaWcbeqaaiaaikdaaaGccqGH9aqpdaWccaqaaiaaigdaaeaa
% caWGdbWaaSbaaSqaaiaaigdaaeqaaOGaeyyXICTaam4qamaaBaaale
% aacaaIYaaabeaakiabgwSixlaadkfadaWgaaWcbaGaaGymaaqabaGc
% cqGHflY1caWGsbWaaSbaaSqaaiaaiodaaeqaaaaaaOqaaiaadkeaca
% WGUbWaaSbaaSqaaiaaigdaaeqaaOGaeyyXICTaeqyYdC3aaSbaaSqa
% aiaadoeaaeqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaam4qamaaBa
% aaleaacaaIYaaabeaakiabgwSixlaadkfadaWgaaWcbaGaaGymaaqa
% baGccqGHflY1caWGsbWaaSbaaSqaaiaaiodaaeqaaaaakmaabmaaba
% GaamOuamaaBaaaleaacaaIZaaabeaakiabgUcaRmaalaaabaGaamOu
% amaaBaaaleaacaaIXaaabeaakiabgwSixlaadkfadaWgaaWcbaGaaG
% 4maaqabaaakeaacaWGsbWaaSbaaSqaaiaaikdaaeqaaaaakiabgUca
% RiaadkfadaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaaaeaaca
% WGdbGaamOBamaaBaaaleaacaaIXaaabeaakiabgwSixlabeM8a3naa
% BaaaleaacaWGdbaabeaakmaaCaaaleqabaGaaGOmaaaakiabg2da9m
% aalaaabaWaaSaaaeaacaWGsbWaaSbaaSqaaiaaigdaaeqaaaGcbaGa
% amOuamaaBaaaleaacaaIYaaabeaaaaGccqGHRaWkcaaIXaaabaGaam
% 4qamaaBaaaleaacaaIXaaabeaakiabgwSixlaadoeadaWgaaWcbaGa
% aGOmaaqabaGccqGHflY1caWGsbWaaSbaaSqaaiaaigdaaeqaaOGaey
% yXICTaamOuamaaBaaaleaacaaIZaaabeaaaaaaaaa!9198!
\[\begin{array}{l}
{K_U} \cdot C{n_1} \cdot {\omega _C}^2 = {\raise0.7ex\hbox{$1$} \!\mathord{\left/
{\vphantom {1 {{C_1} \cdot {C_2} \cdot {R_1} \cdot {R_3}}}}\right.\kern-\nulldelimiterspace}
\!\lower0.7ex\hbox{${{C_1} \cdot {C_2} \cdot {R_1} \cdot {R_3}}$}}\\
B{n_1} \cdot {\omega _C} = \frac{1}{{{C_2} \cdot {R_1} \cdot {R_3}}}\left( {{R_3} + \frac{{{R_1} \cdot {R_3}}}{{{R_2}}} + {R_1}} \right)\\
C{n_1} \cdot {\omega _C}^2 = \frac{{\frac{{{R_1}}}{{{R_2}}} + 1}}{{{C_1} \cdot {C_2} \cdot {R_1} \cdot {R_3}}}
\end{array}\]$](https://dxdy-01.korotkov.co.uk/f/c/9/3/c937ca41664970cb44c59e7b3f7a136d82.png)
![$% MathType!MTEF!2!1!+-
% feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaadaWcaa
% qaaiaadUeadaWgaaWcbaGaamyvaaqabaaakeaacaWGdbWaaSbaaSqa
% aiaaigdaaeqaaOGaeyyXICTaam4qamaaBaaaleaacaaIYaaabeaaki
% abgwSixlaadkfadaWgaaWcbaGaaGymaaqabaGccqGHflY1caWGsbWa
% aSbaaSqaaiaaiodaaeqaaaaakiabg2da9maalaaabaGaaGymaaqaai
% aadoeadaWgaaWcbaGaaGymaaqabaGccqGHflY1caWGdbWaaSbaaSqa
% aiaaikdaaeqaaOGaeyyXICTaamOuamaaBaaaleaacaaIXaaabeaaki
% abgwSixlaadkfadaWgaaWcbaGaaG4maaqabaaaaOGaeyyXIC9aaSaa
% aeaacaaIXaaabaWaaSaaaeaacaWGsbWaaSbaaSqaaiaaigdaaeqaaa
% GcbaGaamOuamaaBaaaleaacaaIYaaabeaaaaGccqGHRaWkcaaIXaaa
% aaqaaiaadUeadaWgaaWcbaGaamyvaaqabaGccqGH9aqpdaWcaaqaai
% aadkfadaWgaaWcbaGaaGOmaaqabaaakeaacaWGsbWaaSbaaSqaaiaa
% igdaaeqaaOGaey4kaSIaamOuamaaBaaaleaacaaIYaaabeaaaaaaaa
% a!671F!
\[\begin{array}{l}
\frac{{{K_U}}}{{{C_1} \cdot {C_2} \cdot {R_1} \cdot {R_3}}} = \frac{1}{{{C_1} \cdot {C_2} \cdot {R_1} \cdot {R_3}}} \cdot \frac{1}{{\frac{{{R_1}}}{{{R_2}}} + 1}}\\
{K_U} = \frac{{{R_2}}}{{{R_1} + {R_2}}}
\end{array}\]$ $% MathType!MTEF!2!1!+-
% feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaadaWcaa
% qaaiaadUeadaWgaaWcbaGaamyvaaqabaaakeaacaWGdbWaaSbaaSqa
% aiaaigdaaeqaaOGaeyyXICTaam4qamaaBaaaleaacaaIYaaabeaaki
% abgwSixlaadkfadaWgaaWcbaGaaGymaaqabaGccqGHflY1caWGsbWa
% aSbaaSqaaiaaiodaaeqaaaaakiabg2da9maalaaabaGaaGymaaqaai
% aadoeadaWgaaWcbaGaaGymaaqabaGccqGHflY1caWGdbWaaSbaaSqa
% aiaaikdaaeqaaOGaeyyXICTaamOuamaaBaaaleaacaaIXaaabeaaki
% abgwSixlaadkfadaWgaaWcbaGaaG4maaqabaaaaOGaeyyXIC9aaSaa
% aeaacaaIXaaabaWaaSaaaeaacaWGsbWaaSbaaSqaaiaaigdaaeqaaa
% GcbaGaamOuamaaBaaaleaacaaIYaaabeaaaaGccqGHRaWkcaaIXaaa
% aaqaaiaadUeadaWgaaWcbaGaamyvaaqabaGccqGH9aqpdaWcaaqaai
% aadkfadaWgaaWcbaGaaGOmaaqabaaakeaacaWGsbWaaSbaaSqaaiaa
% igdaaeqaaOGaey4kaSIaamOuamaaBaaaleaacaaIYaaabeaaaaaaaa
% a!671F!
\[\begin{array}{l}
\frac{{{K_U}}}{{{C_1} \cdot {C_2} \cdot {R_1} \cdot {R_3}}} = \frac{1}{{{C_1} \cdot {C_2} \cdot {R_1} \cdot {R_3}}} \cdot \frac{1}{{\frac{{{R_1}}}{{{R_2}}} + 1}}\\
{K_U} = \frac{{{R_2}}}{{{R_1} + {R_2}}}
\end{array}\]$](https://dxdy-03.korotkov.co.uk/f/2/e/7/2e775190a5e8a3d9de00616914b9ef4c82.png)
Так как у нас 3 уравнения и 6 неизвестных, то некоторые значения выберем произвольно. Емкость выбирают из условия:
![$% MathType!MTEF!2!1!+-
% feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa
% aaleaacaaIXaaabeaakiabg2da9maalaaabaGaaGymaiaaicdaaeaa
% caWGMbWaaSbaaSqaaiaadoeaaeqaaaaakiabgwSixlaaigdacaaIWa
% WaaWbaaSqabeaacqGHsislcaaI2aaaaOGaeyypa0ZaaSaaaeaacaaI
% XaGaaGimaaqaaiaaigdacaaIWaGaaGimaiaaicdaaaGaeyyXICTaaG
% ymaiaaicdadaahaaWcbeqaaiabgkHiTiaaiAdaaaGccqGH9aqpcaaI
% XaGaaGimaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacqGHsislca
% aI5aaaaaaa!5514!
\[{C_1} = \frac{{10}}{{{f_C}}} \cdot {10^{ - 6}} = \frac{{10}}{{1000}} \cdot {10^{ - 6}} = 10 \cdot {10^{ - 9}}\]$ $% MathType!MTEF!2!1!+-
% feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa
% aaleaacaaIXaaabeaakiabg2da9maalaaabaGaaGymaiaaicdaaeaa
% caWGMbWaaSbaaSqaaiaadoeaaeqaaaaakiabgwSixlaaigdacaaIWa
% WaaWbaaSqabeaacqGHsislcaaI2aaaaOGaeyypa0ZaaSaaaeaacaaI
% XaGaaGimaaqaaiaaigdacaaIWaGaaGimaiaaicdaaaGaeyyXICTaaG
% ymaiaaicdadaahaaWcbeqaaiabgkHiTiaaiAdaaaGccqGH9aqpcaaI
% XaGaaGimaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacqGHsislca
% aI5aaaaaaa!5514!
\[{C_1} = \frac{{10}}{{{f_C}}} \cdot {10^{ - 6}} = \frac{{10}}{{1000}} \cdot {10^{ - 6}} = 10 \cdot {10^{ - 9}}\]$](https://dxdy-02.korotkov.co.uk/f/d/c/b/dcb4e7e8b7c0c0f4acba3bdb3018060882.png)
![$% MathType!MTEF!2!1!+-
% feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaBa
% aaleaacaaIXaaabeaakiabg2da9iaadkfadaWgaaWcbaGaaGOmaaqa
% baGccqGH9aqpcaaI1aaaaa!3C72!
\[{R_1} = {R_2} = 5\]$ $% MathType!MTEF!2!1!+-
% feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaBa
% aaleaacaaIXaaabeaakiabg2da9iaadkfadaWgaaWcbaGaaGOmaaqa
% baGccqGH9aqpcaaI1aaaaa!3C72!
\[{R_1} = {R_2} = 5\]$](https://dxdy-03.korotkov.co.uk/f/2/5/b/25b3b7c59f7f727c53215db29021f8a782.png)
кОм - это я выбрал иначе у меня ничего не получалось вывести остальное. Именно 5 кОм выбрал, чтобы C2 было положительное.
![$% MathType!MTEF!2!1!+-
% feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBa
% aaleaacaWGvbaabeaakiabg2da9maalaaabaGaamOuamaaBaaaleaa
% caaIYaaabeaaaOqaaiaadkfadaWgaaWcbaGaaGymaaqabaGccqGHRa
% WkcaWGsbWaaSbaaSqaaiaaikdaaeqaaaaakiabg2da9maalaaabaGa
% aGymaaqaaiaaikdaaaaaaa!41D5!
\[{K_U} = \frac{{{R_2}}}{{{R_1} + {R_2}}} = \frac{1}{2}\]$ $% MathType!MTEF!2!1!+-
% feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBa
% aaleaacaWGvbaabeaakiabg2da9maalaaabaGaamOuamaaBaaaleaa
% caaIYaaabeaaaOqaaiaadkfadaWgaaWcbaGaaGymaaqabaGccqGHRa
% WkcaWGsbWaaSbaaSqaaiaaikdaaeqaaaaakiabg2da9maalaaabaGa
% aGymaaqaaiaaikdaaaaaaa!41D5!
\[{K_U} = \frac{{{R_2}}}{{{R_1} + {R_2}}} = \frac{1}{2}\]$](https://dxdy-04.korotkov.co.uk/f/b/7/8/b784ede2423153b0ac72a118812fe5e282.png)
Ну остальное уже подставляя эти значения в уравнения. Так можно решать (произвольно выбирать значения) или нет? Пытаясь хоть как-то выразить без таких упрощений у меня ничего не получилось. Хотел C2 выбрать произвольно, но не получилось выразить условия. После нескольких часов танцами с бубном вокруг формул, решил сопротивления произвольно задать....