2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 HMIC 2014
Сообщение28.05.2014, 05:54 
Заслуженный участник


20/07/09
4026
МФТИ ФУПМ
Цитата:
2014 triangles have non-overlapping interiors contained in a circle of radius 1. What is the largest possible value of the sum of their areas?
Казалось бы, если бы треугольники были вершинками на окружности — чего там думать, бери правильный, не ошибёшься. Так вот нет же…

 Профиль  
                  
 
 Re: HMIC 2014
Сообщение28.05.2014, 07:49 


14/01/11
3040
В смысле, правильный 2016-угольник?

 Профиль  
                  
 
 Re: HMIC 2014
Сообщение28.05.2014, 10:00 
Заслуженный участник


12/09/10
1547
Цитата:
This problem turned out to be much trickier than we expected. We have yet to
see a complete solution, but let us know if you find one!

У меня похожий случай был. На краевой олимпиаде для 8-го класса была такая задача:
Найти наибольшее количество квадратов со стороной $1$ которое можно разместить без наложений в круге радиуса $2$
Пример для 8 квадратов легко находится, а вот далее у авторов было такое "доказательство":
9 квадратов разместить нельзя, поскольку у наиболее плотной упаковки в виде квадрата $ 3 \times 3$ диагональ равна $3 \sqrt 2 > 4$ :facepalm:
Жюри признавало, что доказательство некорректно, но снять задачу смелости не хватило...

 Профиль  
                  
 
 Re: HMIC 2014
Сообщение28.05.2014, 11:42 


14/01/11
3040
В круге диаметра $4$, должно быть? А как $8$ квадратов упаковали? Мне это не кажется таким уж очевидным. Кстати, наткнулся на эмпирические результаты исследования проблемы упаковки квадратов в круг, там для $9$ квадратов радиус больше $2$. :-)

 Профиль  
                  
 
 Re: HMIC 2014
Сообщение28.05.2014, 12:03 
Заслуженный участник


12/09/10
1547
Sender, спасибо, исправил.
Пример был с прямоугольником $ 1\times 2$ на прямоугольнике $ 2 \times 3$
Центр окружности - внутри большого прямоугольника на расстоянии $h$ от нижней стороны. $h=\sqrt{2^2-1.5^2}$
Надо проверить, что $\sqrt{(3-h)^2+1} < 2$
$(3-h)^2+1 \approx 3.81 \approx 1.95^2$

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 5 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group