Какие-то определения становятся менее удобными, если вообще возможными.
Я, конечно, плохо помню соответствующий спецкурс, но думал, что большинство определений этой теории строится в терминах динамической системы, состоящей из пространства с мерой и отображения
, сохраняющего меру. В частности эргодичность — это то, что инвариантные подмножества имеют либо меру 0, либо полную меру. Дальше устойчивые и неустойчивые многообразия, равномерная гиперболичность и т. д. Ну и разговоры о траекториях точек при итерациях
, аттракторы и т. п.
В случае ОДУ в качестве пространства рассматривается фазовое пространство, а в качестве
— сдвиг по времени, например, на единицу. Т. е. это частный случай, для работы с которым нужно переходить к терминам отображения пространства начальных данных.
Возможно, это только один из подходов, но что-то мне подсказывает, что все эти картинки с фракталами и аттракторами Лоренца нужны в первую очередь как selling point для экономистов, а учебники для не-математиков состоят как минимум наполовину из псевдофилософской чуши.
Если читать мою фразу "оно не включает в себя упоминание точности начальных данных", то моё возражение остаётся в силе.
Ну я думаю, что мы говорим об одном и том же: можно говорить не о точности или неточности, а о том, насколько неточность может влиять на качественную картину.
Тор с иррациональной намоткой.
Да, я его в первую очередь и имел в виду; можно даже окружность и поворот на иррациональный угол. Но есть и другие отображения, например,
. Здесь, кажется, хаос уже будет, но, опять же, я не уверен и смотреть лень.