Привет, ребята! Решаю аналогичную задачу с двойными интегралами по теории вероятности (сама!). Преподаватель сделал замечания к решению: "ошибки при вычислении Dy, ковариации. Не знаете, что коэффициент корреляции по величине не превышает единицы. При вычислении мат. ожидания должно быть Х=-1".
Помогите, пожалуйста, исправить! Это последние ошибки на пути к зачету по высшей математике-5. Я вас очень прошу! Это под буквами е), ж), з), к).
Условие:
Дана плотность распределения вероятностей системы
(X,Y)

{C в треугольнике О(0,0), А(-3,0), В(-3,1), 0 в остальных точках}
Найти: а) константу С
б)

,
в)

,
г)

,
д)

,
е)

,
ж)cov(X,Y)
з)

,
и)F(-2, 1/2)
к) M[Y/X=-1]
Решение
а) по условию нормировки C получилось 2/3.
б) плотность распределения составляющей х у меня равно -2/9x (-3<x<0)
плотность распределения y получилось 2-2y (0<y<1)
в)
г)
д)
е)
Как считала, попробую написать:

=

=

=1/12
может я неправильно интеграл взяла? а может неправильно его решила. Может плотность распределения y не так вычислила?
ж)cov(x,y)=-0,8333333
Понимаю, раз преподаватель говорит, это неправильно. Пожалуйста, помогите рассчитать ковариацию! Формулу то я правильную взяла, да, видать, запуталась при вычислении двойного интеграла.
з)

, конечно это неправильно, раз ковариация и Dy рассчитаны неверно, ведь и то и другое входит в формулу для вычисления коэффициента корреляции.
и)F=1/3
к)M[Y/X=-1]=-1/6 Очевидно я тут неправильно тоже посчитала. Смотрю смотрю во все глаза, а ошибку не нахожу.