2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3  След.
 
 Re: Вектан ч2 (запутался в формулах)
Сообщение12.03.2014, 20:52 
Аватара пользователя
Oleg Zubelevich в сообщении #836060 писал(а):
я считаю, что с правильнми замечаниями разумнее всего соглашаться и не только в этой теме.

Вы об этом? Но я в самом деле восхищен тем, что написал olenellus, что же мне, всякий раз оглядываться на Ваше мнение?

 
 
 
 Re: Вектан ч2 (запутался в формулах)
Сообщение12.03.2014, 21:00 
Аватара пользователя
Oleg Zubelevich в сообщении #836051 писал(а):
я, конечно, дико извиняюсь, но как раз это не является тензором.

Объясните, почему? Или опять будете ходить с загадочным видом, намекая на определения, известные только вам, а не всем окружающим?

 
 
 
 Re: Вектан ч2 (запутался в формулах)
Сообщение13.03.2014, 07:46 
набор функций
svv в сообщении #835922 писал(а):
например, $\partial_i g^j$

тензорного поля не образует. что в этом неясного? сделайте замену координат – убедитесь. Неудобно даже обсуждать такие вещи.

 
 
 
 Re: Вектан ч2 (запутался в формулах)
Сообщение13.03.2014, 10:56 
Аватара пользователя
Если $a_i$ и $b^j$ - тензорные поля, то и $a_i b^j$ - тензорное поле.

Продемонстрируйте всё-таки свой point, как бы это ни было неудобно.

 
 
 
 Re: Вектан ч2 (запутался в формулах)
Сообщение13.03.2014, 15:43 
Munin в сообщении #835573 писал(а):
Всё так. Просто выражение $\operatorname{grad}(\mathbf{fg})=\nabla(\mathbf{fg})$ имеет вид $\mathbf{a}(\mathbf{bc}),$ которое не так-то просто переписать в таком порядке, чтобы поставить первый множитель в середину. Приходится пользоваться фокусом "бац минус цаб".

-- 11.03.2014 17:53:24 --

В индексной нотации, разумеется, всё элементарно: $\partial_i(f_j g^j)=(\partial_i f_j)g^j+f_j(\partial_i g^j).$

Реакцию ТСа видно, просто я увидел это сообщение и понял, что это и есть ответ на мой вопрос.

 
 
 
 Re: Вектан ч2 (запутался в формулах)
Сообщение13.03.2014, 16:55 
Уважаемые форумчане, возник еще вопрос, помогите найти ошибку в моих вычислениях:
$\operatorname{grad}(A\cdot B)= ?$
$=\nabla(\mathbf{\overset{\downarrow}{A}\overset{\downarrow}{B}})=A(\nabla\cdot\dot B)+\dot A(\nabla\cdot B) + B(\nabla\cdot\dot A) +\dot B(\nabla\cdot A)=$
=$A(\nabla\cdot B) + (B \cdot\nabla)A + B(\nabla\cdot A) + (A \cdot\nabla)B$
В результате, как я вижу я получу дивергенции, но в ответе откуда-то берутся роторы. Ошибка, вероятно, элементарная...

-- 13.03.2014, 18:07 --

Ответ на свой вопрос нашел: тут используется "бац-цаб", теперь непонятно почему то что написал я - ошибочно?

 
 
 
 Re: Вектан ч2 (запутался в формулах)
Сообщение13.03.2014, 20:11 
Аватара пользователя
Потому что вы свободно переставляете множители. У вас структура произведения такая: вектор умножить на (вектор умножить на вектор). В скобочках результат - скаляр. Его вы умножаете на первый вектор (наблу). С векторами нельзя произвольно переставлять сомножители, как это вы делаете с числами. Всегда у вас структура выражения распадается на:
- попарные произведения векторов, векторные или скалярные;
- произведения одного вектора на сколько угодно скаляров.
В первом случае, можно переставлять векторы только в пределах попарного произведения (и если произведение векторное, меняя знак). Во втором случае - можно переставлять скаляры между собой как угодно, это ни на что не влияет.

В общем, когда вы работаете с векторными выражениями, это почти так же удобно, как и с обычными выражениями в действительных или комплексных числах, но надо отказываться от некоторых привычек, и заменять их более сложными правилами. Точно так же, вам придётся снова отказываться от старых привычек, когда вы столкнётесь с выражениями из матриц, и с выражениями из операторов. Матрицы и операторы даже нельзя менять местами в произведении.

 
 
 
 Re: Вектан ч2 (запутался в формулах)
Сообщение13.03.2014, 20:27 
$$\partial_i=\frac{\partial x^{i'}}{\partial x^i}\partial_{i'},\quad g^j=\frac{\partial x^{j}}{\partial x^{j'}}g^{j'}$$
$$\partial_ig^j=\frac{\partial x^{i'}}{\partial x^i}\partial_{i'}\Big(\frac{\partial x^{j}}{\partial x^{j'}}g^{j'}\Big)=\frac{\partial x^{i'}}{\partial x^i}\frac{\partial x^{j}}{\partial x^{j'}}\partial_{i'}g^{j'}+\frac{\partial x^{i'}}{\partial x^i}\frac{\partial^2 x^j}{\partial x^{i'}\partial x^{j'}}g^{j'}$$

 
 
 
 Re: Вектан ч2 (запутался в формулах)
Сообщение13.03.2014, 20:48 
Аватара пользователя
:lol1: :appl:
Шутку оценил.

 
 
 
 Re: Вектан ч2 (запутался в формулах)
Сообщение13.03.2014, 21:39 
Аватара пользователя
Применив нелинейное преобразование координат, Oleg Zubelevich обнаружил, что в новых координатах появилось дополнительное слагаемое.

 
 
 
 Re: Вектан ч2 (запутался в формулах)
Сообщение13.03.2014, 21:40 
Ээээм, это вы надо мной смеетесь?

 
 
 
 Re: Вектан ч2 (запутался в формулах)
Сообщение13.03.2014, 21:41 
Аватара пользователя
И не над Вами, и не смеемся.

 
 
 
 Re: Вектан ч2 (запутался в формулах)
Сообщение13.03.2014, 21:49 
Аватара пользователя

(Оффтоп)

svv в сообщении #836583 писал(а):
Применив нелинейное преобразование координат, Oleg Zubelevich обнаружил, что в новых координатах появилось дополнительное слагаемое.

Ещё немного и он "откроет" символы Кристоффеля...

 
 
 
 Re: Вектан ч2 (запутался в формулах)
Сообщение13.03.2014, 22:04 
svv в сообщении #836583 писал(а):
Применив нелинейное преобразование координат, Oleg Zubelevich обнаружил, что в новых координатах появилось дополнительное слагаемое.

я это обнаружил на 2 курсе, надеюсь, что и Вы это теперь обнаружили, и не будете писать чушь:
svv в сообщении #835922 писал(а):
формулы могут оказаться тензорными, например, $\partial_i g^j$.

 
 
 
 Re: Вектан ч2 (запутался в формулах)
Сообщение13.03.2014, 22:33 
Аватара пользователя
OK, только для Вас:
$\partial_i g^j+\Gamma_{ki}^j g^k$, где $\Gamma_{ki}^j=0$.

 
 
 [ Сообщений: 32 ]  На страницу Пред.  1, 2, 3  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group