не получилось с дискретным временем (Оффтоп)
Код: 9. nb
In[23]:= c = 3*10^8; H = 7.2*10^5; \[Tau] = 47*10^-6; Fd = 7200; Tp = 50*10^-6; f = 3.5*10^8; v = 7500; Q = 18000; L = 100; s2 = 0.003; s1 = 2; \[CapitalTheta]0 = 0.018; m = 256; \[Lambda] = 0.022; n = 3; lm = 25; d = 1.2; \[Lambda] = 0.022; n = 3; t = List[-10^-8, -20^-9, -10^-9, 0, 10^-11, 10^-10, 10^-9, 10^-8, 20*10^-7, 2*10^-6, 10^-6]; p := Sum[NIntegrate[ Exp[(\[Pi]*Fd^2*Tp^2*(m - Abs[k])^2*x^2)/ H^2 - (n^2*\[Pi]^2*d^2*y^2)/(\[CapitalTheta]0^2*\[Lambda]^2* H^2*141^2) - (100*lm^2*x^2*s1^2)/(H^2*L^2*\[Pi]^2* s2^2) - (100*lm^2*y^2*s1^2)/(H^2*L^2*\[Pi]^2* s2^2) - (5.55*(y^2 + x^2))/(H^2*\[CapitalTheta]0^2) - \[Pi]*(f^2*(tt - k*Tp - x^2/(c*H) - y^2/(c*H))^2 + 2*Q*(v*k*Tp)/(H* d) + \[Tau]^2*((v*k*Tp)/(H*d))^2)], {x, -Infinity, Infinity}, {y, -Infinity, Infinity}, MaxRecursion -> 40, AccuracyGoal -> 60, Method -> "AdaptiveMonteCarlo"], {k, -255, 255}]; ListPlot[Transpose[{t, p}]]
During evaluation of In[23]:= NIntegrate::inumr: The integrand E^(-5.42915*10^-7 x^2-6.22059*10^-7 y^2-3.30433*10^-8 (x^2+y^2)-\[Pi] (-3.98438+1.225*10^17 (51/4000+tt+Times[<<2>>]+Times[<<2>>])^2)) has evaluated to non-numerical values for all sampling points in the region with boundaries {{0,1},{0,1}}. >>
During evaluation of In[23]:= NIntegrate::inumr: The integrand E^(-5.42913*10^-7 x^2-6.22059*10^-7 y^2-3.30433*10^-8 (x^2+y^2)-\[Pi] (-3.96875+1.225*10^17 (127/10000+tt+Times[<<2>>]+Times[<<2>>])^2)) has evaluated to non-numerical values for all sampling points in the region with boundaries {{0,1},{0,1}}. >>
During evaluation of In[23]:= NIntegrate::inumr: The integrand E^(-5.42909*10^-7 x^2-6.22059*10^-7 y^2-3.30433*10^-8 (x^2+y^2)-\[Pi] (-3.95313+1.225*10^17 (253/20000+tt+Times[<<2>>]+Times[<<2>>])^2)) has evaluated to non-numerical values for all sampling points in the region with boundaries {{0,1},{0,1}}. >>
During evaluation of In[23]:= General::stop: Further output of NIntegrate::inumr will be suppressed during this calculation. >>
During evaluation of In[23]:= Transpose::nmtx: The first two levels of the one-dimensional list {{-(1/100000000),-(1/512000000000),-(1/1000000000),0,1/100000000000,1/10000000000,1/1000000000,1/100000000,1/500000,1/500000,1/1000000},511 NIntegrate[Exp[(\[Pi] Power[<<2>>] Power[<<2>>] Power[<<2>>] Power[<<2>>])/Power[<<2>>]-<<4>> Power[<<2>>]-<<4>> Power[<<2>>]-<<4>> Power[<<2>>]-<<2>> Power[<<2>>]-\[Pi] Plus[<<3>>]],{x,-\[Infinity],\[Infinity]},{y,-\[Infinity],\[Infinity]},MaxRecursion->40,AccuracyGoal->60,Method->AdaptiveMonteCarlo]} cannot be transposed. >>
During evaluation of In[23]:= Transpose::nmtx: The first two levels of the one-dimensional list {{-(1/100000000),-(1/512000000000),-(1/1000000000),0,1/100000000000,1/10000000000,1/1000000000,1/100000000,1/500000,1/500000,1/1000000},511 NIntegrate[Exp[(\[Pi] Power[<<2>>] Power[<<2>>] Power[<<2>>] Power[<<2>>])/Power[<<2>>]-<<4>> Power[<<2>>]-<<4>> Power[<<2>>]-<<4>> Power[<<2>>]-<<2>> Power[<<2>>]-\[Pi] Plus[<<3>>]],{x,-\[Infinity],\[Infinity]},{y,-\[Infinity],\[Infinity]},MaxRecursion->40,AccuracyGoal->60,Method->AdaptiveMonteCarlo]} cannot be transposed. >>
During evaluation of In[23]:= Transpose::nmtx: The first two levels of the one-dimensional list {{-(1/100000000),-(1/512000000000),-(1/1000000000),0,1/100000000000,1/10000000000,1/1000000000,1/100000000,1/500000,1/500000,1/1000000},511 NIntegrate[Exp[(\[Pi] Power[<<2>>] Power[<<2>>] Power[<<2>>] Power[<<2>>])/Power[<<2>>]-<<4>> Power[<<2>>]-<<4>> Power[<<2>>]-<<4>> Power[<<2>>]-<<2>> Power[<<2>>]-\[Pi] Plus[<<3>>]],{x,-\[Infinity],\[Infinity]},{y,-\[Infinity],\[Infinity]},MaxRecursion->40,AccuracyGoal->60,Method->AdaptiveMonteCarlo]} cannot be transposed. >>
During evaluation of In[23]:= General::stop: Further output of Transpose::nmtx will be suppressed during this calculation. >>
During evaluation of In[23]:= ListPlot::lpn: Transpose[{{-(1/100000000),-(1/512000000000),-(1/1000000000),0,1/100000000000,1/10000000000,1/1000000000,1/100000000,1/500000,1/500000,1/1000000},511 NIntegrate[Exp[<<5>> Power[<<2>>]-Times[<<2>>]-Times[<<2>>]-Times[<<2>>]-Times[<<2>>]-Times[<<2>>]],{x,-\[Infinity],\[Infinity]},{y,-\[Infinity],\[Infinity]},MaxRecursion->40,AccuracyGoal->60,Method->AdaptiveMonteCarlo]}] is not a list of numbers or pairs of numbers. >>
Out[44]= ListPlot[ Transpose[{{-(1/100000000), -(1/512000000000), -(1/1000000000), 0, 1/ 100000000000, 1/10000000000, 1/1000000000, 1/100000000, 1/500000, 1/500000, 1/1000000}, 511 NIntegrate[ Exp[(\[Pi] Fd^2 Tp^2 (m - Abs[k])^2 x^2)/H^2 - ( n^2 \[Pi]^2 d^2 y^2)/(\[CapitalTheta]0^2 \[Lambda]^2 H^2 \ 141^2) - (100 lm^2 x^2 s1^2)/(H^2 L^2 \[Pi]^2 s2^2) - ( 100 lm^2 y^2 s1^2)/(H^2 L^2 \[Pi]^2 s2^2) - ( 5.55 (y^2 + x^2))/( H^2 \[CapitalTheta]0^2) - \[Pi] (f^2 (tt - k Tp - x^2/(c H) - y^2/(c H))^2 + (2 Q (v k Tp))/( H d) + \[Tau]^2 ((v k Tp)/( H d))^2)], {x, -\[Infinity], \[Infinity]}, {y, -\ \[Infinity], \[Infinity]}, MaxRecursion -> 40, AccuracyGoal -> 60, Method -> "AdaptiveMonteCarlo"]}]] , с непререрывным тоже (Оффтоп)
Код: 7. nb In[66]:= c = 3*10^8; H = 7.2*10^5; \[Tau] = 47*10^-6; Fd = 7200; Tp = 50*10^-6; f = 3.5*10^8; v = 7500; Q = 18000; L = 100; s2 = 0.003; s1 = 2; \[CapitalTheta]0 = 0.018; m = 256; \[Lambda] = 0.022; n = 3; lm = 25; d = 1.2; \[Lambda] = 0.022; n = 3; p[t] := Sum[ NIntegrate[ Exp[(\[Pi]*Fd^2*Tp^2*(m - Abs[k])^2*x^2)/ H^2 - (n^2*\[Pi]^2*d^2*y^2)/(\[CapitalTheta]0^2*\[Lambda]^2* H^2*141^2) - (100*lm^2*x^2*s1^2)/(H^2*L^2*\[Pi]^2* s2^2) - (100*lm^2*y^2*s1^2)/(H^2*L^2*\[Pi]^2* s2^2) - (5.55*(y^2 + x^2))/(H^2*\[CapitalTheta]0^2) - \[Pi]*(f^2*(tt - k*Tp - x^2/(c*H) - y^2/(c*H))^2 + 2*Q*(v*k*Tp)/(H* d) + \[Tau]^2*((v*k*Tp)/(H*d))^2)], {x, -Infinity, Infinity}, {y, -Infinity, Infinity}, MaxRecursion -> 40, AccuracyGoal -> 60, Method -> "AdaptiveMonteCarlo"], {k, -255, 255}]; Plot[p[t], {-10^(-8), 10^(-6)}, PlotPoints -> 30, MaxRecursion -> 0]
During evaluation of In[66]:= NIntegrate::inumr: The integrand E^(-5.42915*10^-7 x^2-6.22059*10^-7 y^2-3.30433*10^-8 (x^2+y^2)-\[Pi] (-3.98438+1.225*10^17 (51/4000+tt+Times[<<2>>]+Times[<<2>>])^2)) has evaluated to non-numerical values for all sampling points in the region with boundaries {{0,1},{0,1}}. >>
During evaluation of In[66]:= NIntegrate::inumr: The integrand E^(-5.42913*10^-7 x^2-6.22059*10^-7 y^2-3.30433*10^-8 (x^2+y^2)-\[Pi] (-3.96875+1.225*10^17 (127/10000+tt+Times[<<2>>]+Times[<<2>>])^2)) has evaluated to non-numerical values for all sampling points in the region with boundaries {{0,1},{0,1}}. >>
During evaluation of In[66]:= NIntegrate::inumr: The integrand E^(-5.42909*10^-7 x^2-6.22059*10^-7 y^2-3.30433*10^-8 (x^2+y^2)-\[Pi] (-3.95313+1.225*10^17 (253/20000+tt+Times[<<2>>]+Times[<<2>>])^2)) has evaluated to non-numerical values for all sampling points in the region with boundaries {{0,1},{0,1}}. >>
During evaluation of In[66]:= General::stop: Further output of NIntegrate::inumr will be suppressed during this calculation. >> During evaluation of In[66]:= SetDelayed::write: Tag Times in (511 NIntegrate[Exp[(\[Pi] Fd^2 Tp^2 Plus[<<2>>]^2 x^2)/H^2-(Power[<<2>>] Power[<<2>>] Power[<<2>>] Power[<<2>>])/Times[<<4>>]-(100 Power[<<2>>] Power[<<2>>] Power[<<2>>])/Times[<<4>>]-(100 Power[<<2>>] Power[<<2>>] Power[<<2>>])/Times[<<4>>]-(5.55 Plus[<<2>>])/Times[<<2>>]-\[Pi] (Times[<<2>>]+Times[<<3>>]+Times[<<2>>])],{x,-\[Infinity],\[Infinity]},{y,-\[Infinity],\[Infinity]},MaxRecursion->40,AccuracyGoal->60,Method->AdaptiveMonteCarlo])[{-(1/100000000),-(1/512000000000),-(1/1000000000),0,1/100000000000,1/10000000000,1/1000000000,1/100000000,1/500000,1/500000,1/1000000}] is Protected. >>
During evaluation of In[66]:= Plot::pllim: Range specification {-(1/10^8),1/10^6} is not of the form {x, xmin, xmax}. >>
Out[86]= Plot[p[t], {-(1/10^8), 1/10^6}, PlotPoints -> 30, MaxRecursion -> 0] . Для ускорения последнего расчета явно указал 100 отсчетов в PlotPoints.
|