MaxRecursion вставляет без стрелки-указателя
Под средней машиной я имел в виду обычный Prescott 2,8+4Гб RAM
Код:
c = 3*10^8;
H = 7.2*10^5;
\[Tau] = 47*10^-6;
Fd = 7200;
Tp = 50*10^-6;
f = 3.5*10^8;
v = 7500;
Q = 18000;
L = 100;
s2 = 0.003;
s1 = 2;
\[CapitalTheta]0 = 0.018;
m = 256;
\[Lambda] = 0.022;
n = 3;
lm = 25;
d = 1.2;
\[Lambda] = 0.022;
n = 3;
t = List[ -10^-8, -10^-9, 0, 10^-11, 10^-10, 10^-9, 10^-8, 20*10^-7];
In[1]:= pp[tt_] = Sum[
NIntegrate [
Exp[x^2*(\[Pi]*Fd^2*\[Tau]^2*(m - Abs[k])^2 )/H^2 - (
0.00005*n^2*\[Pi]^2*d^2*y^2 )/(\[CapitalTheta]0^2*\[Lambda]^2 *H^2) - (
100*lm^2*x^2*s1^2)/(H^2*L^2*\[Pi]^2*s2^2) - (100*lm^2*y^2*s1^2)/(
H^2*L^2*\[Pi]^2*s2^2) - (5.55*(y^2 + x^2))/(
H^2*\[CapitalTheta]0^2) - \[Pi] * (f^2 *(t - k*Tp - x^2/(c*H) - y^2/(
c*H))^2 +
2*Q*(v*k*Tp)/(H*d) + \[Tau]^2*((v*k*Tp)/(H*d))^2 )], {x, -Infinity,
Infinity}, {y, -Infinity, Infinity}, MaxRecursion -> 40,
AccuracyGoal -> 60, Method -> "AdaptiveMonteCarlo"], {k, -255, 255}]
During evaluation of In[1]:= NIntegrate::inumr: The integrand E^(-((100 lm^2 s1^2 x^2)/(H^2 L^2 \[Pi]^2 s2^2))-(100 lm^2 s1^2 y^2)/(H^2 L^2 \[Pi]^2 s2^2)-<<1>>/<<1>>-<<1>>/<<1>>+(Fd^2 <<3>> <<1>>)/H^2-\[Pi] (-((510 Q Tp v)/(d H))+f^2 (t+Times[<<2>>]+Times[<<4>>]+Times[<<4>>])^2+(65025 Tp^2 v^2 \[Tau]^2)/(d^2 H^2))) has evaluated to non-numerical values for all sampling points in the region with boundaries {{0,1},{0,1}}. >>
During evaluation of In[1]:= NIntegrate::inumr: The integrand E^(-((100 lm^2 s1^2 x^2)/(H^2 L^2 \[Pi]^2 s2^2))-(100 lm^2 s1^2 y^2)/(H^2 L^2 \[Pi]^2 s2^2)-<<1>>/<<1>>-<<1>>/<<1>>+(Fd^2 <<3>> <<1>>)/H^2-\[Pi] (-((508 Q Tp v)/(d H))+f^2 (t+Times[<<2>>]+Times[<<4>>]+Times[<<4>>])^2+(64516 Tp^2 v^2 \[Tau]^2)/(d^2 H^2))) has evaluated to non-numerical values for all sampling points in the region with boundaries {{0,1},{0,1}}. >>
During evaluation of In[1]:= NIntegrate::inumr: The integrand E^(-((100 lm^2 s1^2 x^2)/(H^2 L^2 \[Pi]^2 s2^2))-(100 lm^2 s1^2 y^2)/(H^2 L^2 \[Pi]^2 s2^2)-<<1>>/<<1>>-<<1>>/<<1>>+(Fd^2 <<3>> <<1>>)/H^2-\[Pi] (-((506 Q Tp v)/(d H))+f^2 (t+Times[<<2>>]+Times[<<4>>]+Times[<<4>>])^2+(64009 Tp^2 v^2 \[Tau]^2)/(d^2 H^2))) has evaluated to non-numerical values for all sampling points in the region with boundaries {{0,1},{0,1}}. >>
During evaluation of In[1]:= General::stop: Further output of NIntegrate::inumr will be suppressed during this calculation. >>
Out[1]= 511 NIntegrate[
Exp[(x^2 (\[Pi] Fd^2 \[Tau]^2 (m - Abs[k])^2))/H^2 - (
0.00005 n^2 \[Pi]^2 d^2 y^2)/(\[CapitalTheta]0^2 \[Lambda]^2 H^2) - (
100 lm^2 x^2 s1^2)/(H^2 L^2 \[Pi]^2 s2^2) - (100 lm^2 y^2 s1^2)/(
H^2 L^2 \[Pi]^2 s2^2) - (5.55 (y^2 + x^2))/(
H^2 \[CapitalTheta]0^2) - \[Pi] (f^2 (t - k Tp - x^2/(c H) - y^2/(
c H))^2 + (2 Q (v k Tp))/(
H d) + \[Tau]^2 ((v k Tp)/(
H d))^2)], {x, -\[Infinity], \[Infinity]}, {y, -\[Infinity], \
\[Infinity]}, MaxRecursion -> 40, AccuracyGoal -> 60,
Method -> "AdaptiveMonteCarlo"]
In[2]:= Plot[pp[t], {t, -10^(-8), 20*10^(-8)}, PlotPoints -> 20]
ListLogPlotPlot[Transpose[{t, p}]]
During evaluation of In[2]:= NIntegrate::inumr: The integrand E^(-((100 lm^2 s1^2 x^2)/(H^2 L^2 \[Pi]^2 s2^2))-(100 lm^2 s1^2 y^2)/(H^2 L^2 \[Pi]^2 s2^2)-(5.55 (<<1>>))/(H^2 \[CapitalTheta]0^2)-<<1>>/<<1>>-\[Pi] ((2 k Q Tp v)/(d H)+f^2 (<<1>>)^2+(k^2 Tp^2 v^2 \[Tau]^2)/(d^2 H^2))+(Fd^2 \[Pi] x^2 \[Tau]^2 (m-Abs[k])^2)/H^2) has evaluated to non-numerical values for all sampling points in the region with boundaries {{0,1},{0,1}}. >>
During evaluation of In[2]:= NIntegrate::inumr: The integrand E^(<<9>>+(3.14159 Fd^2 x^2 \[Tau]^2 (m-1. <<1>>)^2)/H^2) has evaluated to non-numerical values for all sampling points in the region with boundaries {{0,1},{0,1}}. >>
During evaluation of In[2]:= NIntegrate::inumr: The integrand E^(<<9>>+(3.14159 Fd^2 x^2 \[Tau]^2 (m-1. <<1>>)^2)/H^2) has evaluated to non-numerical values for all sampling points in the region with boundaries {{0,1},{0,1}}. >>
During evaluation of In[2]:= General::stop: Further output of NIntegrate::inumr will be suppressed during this calculation. >>
Out[2]= \!\(\*
GraphicsBox[{},
AspectRatio->0.6180339887498948,
Axes->True,
AxesLabel->{None, None},
AxesOrigin->{0, 0},
Method->{},
PlotRange->{{-1.*^-8, 2.*^-7}, {0., 0.}},
PlotRangeClipping->True,
PlotRangePadding->{
Scaled[0.02],
Scaled[0.02]}]\)
During evaluation of In[2]:= Transpose::nmtx: The first two levels of the one-dimensional list {t,p} cannot be transposed. >>
ListLogPlotPlot[Transpose[{t, p}], MaxRecursion]
In[4]:= p[tt_] = Sum[
NIntegrate[
Exp[x^2*(\[Pi]*Fd^2*\[Tau]^2*(m - Abs[k])^2)/
H^2 - (0.00005*n^2*\[Pi]^2*d^2*y^2)/(\[CapitalTheta]0^2*\[Lambda]^2*
H^2) - (100*lm^2*x^2*s1^2)/(H^2*L^2*\[Pi]^2*s2^2) - (100*lm^2*y^2*
s1^2)/(H^2*L^2*\[Pi]^2*
s2^2) - (5.55*(y^2 +
x^2))/(H^2*\[CapitalTheta]0^2) - \[Pi]*(f^2*(t - k*Tp - x^2/(c*H) -
y^2/(c*H))^2 +
2*Q*(v*k*Tp)/(H*d) + \[Tau]^2*((v*k*Tp)/(H*d))^2)], {x, -Infinity,
Infinity}, {y, -Infinity, Infinity}, MaxRecursion -> 40,
AccuracyGoal -> 60, Method -> "AdaptiveMonteCarlo"], {k, -255, 255}]
During evaluation of In[4]:= NIntegrate::inumr: The integrand E^(-((100 lm^2 s1^2 x^2)/(H^2 L^2 \[Pi]^2 s2^2))-(100 lm^2 s1^2 y^2)/(H^2 L^2 \[Pi]^2 s2^2)-<<1>>/<<1>>-<<1>>/<<1>>+(Fd^2 <<3>> <<1>>)/H^2-\[Pi] (-((510 Q Tp v)/(d H))+f^2 (t+Times[<<2>>]+Times[<<4>>]+Times[<<4>>])^2+(65025 Tp^2 v^2 \[Tau]^2)/(d^2 H^2))) has evaluated to non-numerical values for all sampling points in the region with boundaries {{0,1},{0,1}}. >>
During evaluation of In[4]:= NIntegrate::inumr: The integrand E^(-((100 lm^2 s1^2 x^2)/(H^2 L^2 \[Pi]^2 s2^2))-(100 lm^2 s1^2 y^2)/(H^2 L^2 \[Pi]^2 s2^2)-<<1>>/<<1>>-<<1>>/<<1>>+(Fd^2 <<3>> <<1>>)/H^2-\[Pi] (-((508 Q Tp v)/(d H))+f^2 (t+Times[<<2>>]+Times[<<4>>]+Times[<<4>>])^2+(64516 Tp^2 v^2 \[Tau]^2)/(d^2 H^2))) has evaluated to non-numerical values for all sampling points in the region with boundaries {{0,1},{0,1}}. >>
During evaluation of In[4]:= NIntegrate::inumr: The integrand E^(-((100 lm^2 s1^2 x^2)/(H^2 L^2 \[Pi]^2 s2^2))-(100 lm^2 s1^2 y^2)/(H^2 L^2 \[Pi]^2 s2^2)-<<1>>/<<1>>-<<1>>/<<1>>+(Fd^2 <<3>> <<1>>)/H^2-\[Pi] (-((506 Q Tp v)/(d H))+f^2 (t+Times[<<2>>]+Times[<<4>>]+Times[<<4>>])^2+(64009 Tp^2 v^2 \[Tau]^2)/(d^2 H^2))) has evaluated to non-numerical values for all sampling points in the region with boundaries {{0,1},{0,1}}. >>
During evaluation of In[4]:= General::stop: Further output of NIntegrate::inumr will be suppressed during this calculation. >>
Out[4]= 511 NIntegrate[
Exp[(x^2 (\[Pi] Fd^2 \[Tau]^2 (m - Abs[k])^2))/H^2 - (
0.00005 n^2 \[Pi]^2 d^2 y^2)/(\[CapitalTheta]0^2 \[Lambda]^2 H^2) - (
100 lm^2 x^2 s1^2)/(H^2 L^2 \[Pi]^2 s2^2) - (100 lm^2 y^2 s1^2)/(
H^2 L^2 \[Pi]^2 s2^2) - (5.55 (y^2 + x^2))/(
H^2 \[CapitalTheta]0^2) - \[Pi] (f^2 (t - k Tp - x^2/(c H) - y^2/(
c H))^2 + (2 Q (v k Tp))/(
H d) + \[Tau]^2 ((v k Tp)/(
H d))^2)], {x, -\[Infinity], \[Infinity]}, {y, -\[Infinity], \
\[Infinity]}, MaxRecursion -> 40, AccuracyGoal -> 60,
Method -> "AdaptiveMonteCarlo"]
ListLinePlot[%, AxesLabel -> {"t", "P(t)"}, PlotStyle -> PointSize[0.01]]
NIntegrate::inumr: The integrand E^(-((100 lm^2 s1^2 x^2)/(H^2 L^2 \[Pi]^2 s2^2))-(100 lm^2 s1^2 y^2)/(H^2 L^2 \[Pi]^2 s2^2)-(5.55 (<<1>>))/(H^2 \[CapitalTheta]0^2)-<<1>>/<<1>>-\[Pi] ((2 k Q Tp v)/(d H)+f^2 (t+<<3>>)^2+(k^2 Tp^2 v^2 \[Tau]^2)/(d^2 H^2))+(Fd^2 \[Pi] x^2 \[Tau]^2 (m-Abs[k])^2)/H^2) has evaluated to non-numerical values for all sampling points in the region with boundaries {{0,1},{0,1}}. >>
NIntegrate::inumr: The integrand E^(-((100 lm^2 s1^2 x^2)/(H^2 L^2 \[Pi]^2 s2^2))-(100 lm^2 s1^2 y^2)/(H^2 L^2 \[Pi]^2 s2^2)-(5.55 (<<1>>))/(H^2 \[CapitalTheta]0^2)-<<1>>/<<1>>-\[Pi] ((2 k Q Tp v)/(d H)+f^2 (t+<<3>>)^2+(k^2 Tp^2 v^2 \[Tau]^2)/(d^2 H^2))+(Fd^2 \[Pi] x^2 \[Tau]^2 (m-Abs[k])^2)/H^2) has evaluated to non-numerical values for all sampling points in the region with boundaries {{0,1},{0,1}}. >>
NIntegrate::inumr: The integrand E^(-((100 lm^2 s1^2 x^2)/(H^2 L^2 \[Pi]^2 s2^2))-(100 lm^2 s1^2 y^2)/(H^2 L^2 \[Pi]^2 s2^2)-(5.55 (<<1>>))/(H^2 \[CapitalTheta]0^2)-<<1>>/<<1>>-\[Pi] ((2 k Q Tp v)/(d H)+f^2 (t+<<3>>)^2+(k^2 Tp^2 v^2 \[Tau]^2)/(d^2 H^2))+(Fd^2 \[Pi] x^2 \[Tau]^2 (m-Abs[k])^2)/H^2) has evaluated to non-numerical values for all sampling points in the region with boundaries {{0,1},{0,1}}. >>
General::stop: Further output of NIntegrate::inumr will be suppressed during this calculation. >>
ListLinePlot::lpn: 511 NIntegrate[Exp[(x^2 (\[Pi] Power[<<2>>] Power[<<2>>] Power[<<2>>]))/Power[<<2>>]-(0.00005 Power[<<2>>] Power[<<2>>] Power[<<2>>] Power[<<2>>])/Times[<<3>>]-(100 Power[<<2>>] Power[<<2>>] Power[<<2>>])/Times[<<4>>]-(100 Power[<<2>>] Power[<<2>>] Power[<<2>>])/Times[<<4>>]-(5.55 Plus[<<2>>])/Times[<<2>>]-\[Pi] (Times[<<2>>]+Times[<<3>>]+Times[<<2>>])],{x,-\[Infinity],\[Infinity]},<<3>>,Method->AdaptiveMonteCarlo] is not a list of numbers or pairs of numbers. >>