запросто
Код:
In[49]:= c = 3*10^8;
H = 7.2*10^5;
\[Tau] = 47*10^-6;
Fd = 7200;
Tp = 50*10^-6;
f = 3.5*10^8;
v = 7500;
Q = 18000;
L = 100;
s2 = 0.003;
s1 = 2;
\[CapitalTheta]0 = 0.018;
m = 256;
\[Lambda] = 0.022;
n = 3;
lm = 25;
d = 1.2;
\[Lambda] = 0.022;
n = 3;
In[69]:= P (t) = Sum[
NIntegrate [
Exp[x^2*(\[Pi]*Fd^2*\[Tau]^2*(m - Abs[k])^2 )/H^2 - (
0.00005*n^2*\[Pi]^2*d^2*y^2 )/(\[CapitalTheta]0^2*\[Lambda]^2 *H^2) - (
100*lm^2*x^2*s1^2)/(H^2*L^2*\[Pi]^2*s2^2) - (100*lm^2*y^2*s1^2)/(
H^2*L^2*\[Pi]^2*s2^2) - (5.55*(y^2 + x^2))/(
H^2*\[CapitalTheta]0^2) - \[Pi] * (f^2 *(t - k*Tp - x^2/(c*H) - y^2/(
c*H))^2 +
2*Q*(v*k*Tp)/(H*d) + \[Tau]^2*((v*k*Tp)/(H*d))^2 )], {x, -Infinity,
Infinity}, {y, -Infinity, Infinity}, MaxRecursion -> 40,
AccuracyGoal -> 60, Method -> "AdaptiveMonteCarlo"], {k, -255, 255}]
During evaluation of In[69]:= Set::write: Tag Times in P {-(1/100000000),-(1/1000000000),0,1/1000000000,1/100000000,1/10000000,1/1000000,1/5000} is Protected. >>
Out[69]= {1.59372*10^-12, 343561., 626592., 964461., 59001.6, 0., 0., 676401.}
In[70]:= ListLinePlot[%, AxesLabel -> {"t", "P(t)"}, PlotStyle -> PointSize[0.01]]
Out[70]= \!\(\*
GraphicsBox[{{}, {{}, {},
{RGBColor[0.24720000000000017`, 0.24, 0.6], PointSize[0.01],
LineBox[{{1., 1.5937237677846204`*^-12}, {2., 343560.79215414973`}, {3.,
626591.6960827865}, {4., 964461.1900936544}, {5., 59001.578511843}, {
6., 0.}, {7., 0.}, {8., 676401.3207484136}}]}}, {}},
AspectRatio->0.6180339887498948,
Axes->True,
AxesLabel->{
FormBox["\"t\"", TraditionalForm],
FormBox["\"P(t)\"", TraditionalForm]},
AxesOrigin->{0, 0},
Method->{},
PlotRange->{{0, 8.}, {0, 964461.1900936544}},
PlotRangeClipping->True,
PlotRangePadding->{{0.16, 0.16}, {19289.22380187309, 19289.22380187309}}]\)
In[45]:= Sum[NIntegrate[
Exp[x^2*(\[Pi]*Fd^2*\[Tau]^2*(m - Abs[k])^2)/
H^2 - (0.00005*n^2*\[Pi]^2*d^2*y^2)/(\[CapitalTheta]0^2*\[Lambda]^2*
H^2) - (100*lm^2*x^2*s1^2)/(H^2*L^2*\[Pi]^2*s2^2) - (100*lm^2*y^2*
s1^2)/(H^2*L^2*\[Pi]^2*
s2^2) - (5.55*(y^2 +
x^2))/(H^2*\[CapitalTheta]0^2) - \[Pi]*(f^2*(t - k*Tp - x^2/(c*H) -
y^2/(c*H))^2 +
2*Q*(v*k*Tp)/(H*d) + \[Tau]^2*((v*k*Tp)/(H*d))^2)], {x, -Infinity,
Infinity}, {y, -Infinity, Infinity}, MaxRecursion -> 40,
AccuracyGoal -> 60, Method -> "AdaptiveMonteCarlo"], {k, -255, 255}]
Out[45]= {1.5983*10^-12, 335063., 836068., 936968., 90404., 0., 0., 702430.}
In[46]:= ListLinePlot[%, AxesLabel -> {"t", "P(t)"}, PlotStyle -> PointSize[0.01]]
Out[46]= \!\(\*
GraphicsBox[{{}, {{}, {},
{RGBColor[0.24720000000000017`, 0.24, 0.6], PointSize[0.01],
LineBox[{{1., 1.598299392712959*^-12}, {2., 335062.66072612564`}, {3.,
836067.9196629806}, {4., 936968.342828458}, {5., 90403.98299123366}, {
6., 0.}, {7., 0.}, {8., 702429.7247402478}}]}}, {}},
AspectRatio->0.6180339887498948,
Axes->True,
AxesLabel->{
FormBox["\"t\"", TraditionalForm],
FormBox["\"P(t)\"", TraditionalForm]},
AxesOrigin->{0, 0},
Method->{},
PlotRange->{{0, 8.}, {0, 936968.342828458}},
PlotRangeClipping->True,
PlotRangePadding->{{0.16, 0.16}, {18739.36685656916, 18739.36685656916}}]\)
t = List[ -10^-8, -10^-9, 0, 10^-9, 10^-8, 10^-7, 10^-6, 20*10^-5];
Как сделать плавную кривую на графике? Массив значений t удалил, но результат все равно не очень.
Как сделать, чтобы по x на графике показывались не номера отсчетов, а абсолютное время?