2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2
 
 Re: Деление на ноль
Сообщение06.12.2013, 23:58 
Аватара пользователя
Согласен, в первом случае результат гомеоморфен окружности, во втором - замкнутому отрезку. Всё зависит от потребностей...

 
 
 
 Re: Деление на ноль
Сообщение07.12.2013, 04:31 
provincialka в сообщении #797154 писал(а):
Почему нельзя две бесконечности добавить?
В частности, потому что встаёт в полный рост вопрос об их сумме :wink:

 
 
 
 Re: Деление на ноль
Сообщение07.12.2013, 10:07 
Аватара пользователя
iifat в сообщении #797218 писал(а):
provincialka в сообщении #797154 писал(а):
Почему нельзя две бесконечности добавить?
В частности, потому что встаёт в полный рост вопрос об их сумме :wink:
Подумаешь, одной неопределенностью больше, одной меньше. Впрочем, нет, не больше. Сумма двух "обычных" бесконечностей, т.е. без знака, тоже не определена. А со знаком можно хотя бы сказать, что $+\infty +(+\infty)=+\infty$. Все-таки кое-что.

 
 
 
 Re: Деление на ноль
Сообщение07.12.2013, 12:06 
Аватара пользователя

(Оффтоп)

provincialka в сообщении #797241 писал(а):
Впрочем, нет, не больше.

Иначе говоря, от того, что мы знаки уберём, вопрос не опустится на четвереньки. :-)

 
 
 
 Re: Деление на ноль
Сообщение09.12.2013, 21:38 
Joker_vD в сообщении #797086 писал(а):
391q
Если требовать, чтобы деление было обратным действием к умножению, то придется уметь решать $0\cdot x=1$. Однако ноль и один — очень особые элементы. Ноль — нейтральный элемент сложения. Один — нейтральный элемент умножения. Сложение и умножение связаны дистрибутивным законом, который, собственно, и дает все интересные свойства... а его немедленным следствием является тождество $0\cdot x = 0$.

Отказывайтесь от дистрибутивности.

Есть предложение.
Дабы не отказываться от дистрибутивности, примем равенство нейтральных элементов сложения и умножения. Будем считать ноль нейтральным элементом умножения (и сложения, разумеется). Т.е. $\forall x(0 \cdot x=x, 0 + x = x)$
Остальные элементы по умножению, в этой "системе счисления" просто сместятся $0 \cdot 3 = 3, 1 \cdot 3 = 6, 2 \cdot 3=9, 3\cdot 3=12...$
Делить на ноль легко $x/0=x$ :roll:

Хм…Любопытно, кто-нибудь знает историю математики, почему нейтральным элементом умножения приняли именно единицу ?

 
 
 
 Re: Деление на ноль
Сообщение09.12.2013, 21:47 
Lukin в сообщении #798425 писал(а):
Остальные элементы по умножению, в этой "системе счисления" просто сместятся

Ага. $6=1\cdot3=(0+1)\cdot3=0\cdot3+1\cdot3=3+6$. Спасибо.
Lukin в сообщении #798425 писал(а):
Любопытно, кто-нибудь знает историю математики, почему нейтральным элементом умножения приняли именно единицу ?

Так завещал Ленин.

 
 
 
 Re: Деление на ноль
Сообщение09.12.2013, 21:53 
Аватара пользователя
Lukin в сообщении #798425 писал(а):
почему нейтральным элементом умножения приняли именно единицу ?
Видимо потому, что в кольце целых чисел она им и является :facepalm: Вы издеваетесь или всерьёз считаете, что абстрактную алгебру придумали двевние египтяне, которым помогали марсиане раньше, чем обычные сложение и умножение?

 
 
 
 Re: Деление на ноль
Сообщение09.12.2013, 22:23 
Аватара пользователя
Цитата:
Я не сказал "нельзя", просто $\mathbb{R}$ компактифицируется добавлением одной точки $\infty$ и полученное пространство имеет хорошие свойства.

Только делить на ноль там всё равно нельзя.

 
 
 
 Re: Деление на ноль
Сообщение09.12.2013, 22:59 
Lukin в сообщении #798425 писал(а):
Дабы не отказываться от дистрибутивности, примем равенство нейтральных элементов сложения и умножения.

Т.е. постулируем $0=1$? Тогда у нас все числа оказываются равны.

Lukin в сообщении #798425 писал(а):
почему нейтральным элементом умножения приняли именно единицу ?

Не ставьте телегу впереди лошади. Единица тупо обладает свойством $\forall x\in\mathbb N. 1\cdot x=x$, оно легко выводится из определений числа один, сложения и умножения. Поэтому она оказывается нейтральным элементом умножения.

 
 
 
 Re: Деление на ноль
Сообщение10.12.2013, 03:36 
Аватара пользователя
Сколько мне известно, если нейтральные элементы обеих операций совпадают, то кольцо обязательно вырожденное, т.е. всё кольцо состоит из этого самого нейтрального элемента. Касательно деления на ноль. Господа адепты: потрудитесь наконец заглянуть в учебник - стыдно без конца рассуждать о вещах, ничего о них не зная.

 
 
 [ Сообщений: 25 ]  На страницу Пред.  1, 2


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group