2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу 1, 2  След.
 
 Стеклянные шарики
Сообщение26.09.2007, 22:06 
Заслуженный участник


14/01/07
787
Вспомнилась симпатичная задача на нахождение оптимальной стратегии:

6. Имеется 100-этажный небоскреб и два одинаковых стеклянных шарика. За какое наименьшее число попыток можно с гарантией определить самый низкий этаж, при бросании с которого шарики этого типа разбиваются?

Одна попытка - это одно бросание одного шарика с какого-то этажа. Если шарик после бросания не разбился, то он сохраняет все свои свойства и его можно использовать в дальнейшем; разбившийся шарик из игры выбывает. Если шарик разбивается при бросании с этажа номер n, то он разобьется и при бросании с этажа номер n+1. Шарики могут оказаться и небьющимися.

 Профиль  
                  
 
 
Сообщение26.09.2007, 22:16 
Заслуженный участник


09/02/06
4398
Москва
Можно за 19. Пробуем бросать с 10-гоб 20-го, c 100-го (с шагом 10). Если шарик разбился, на 10k, то бросаем второй с 10k-9,10k-8,... (c шагом 1).

 Профиль  
                  
 
 
Сообщение26.09.2007, 23:10 
Заслуженный участник
Аватара пользователя


01/03/06
13626
Москва
А почему эта стратегия является наилучшей? Конечно, если заранее предполагать, что можно действовать только так: разбить все этажи на группы последовательных этажей, и в каждой группе начинать проверку с верхнего этажа, то нетрудно понять, что указанное Рустом разбиение - оптимально. Но почему нет другой, ещё более оптимальной стратегии?

Добавлено спустя 14 минут 55 секунд:

И что означает эта фраза:
neo66 писал(а):
Шарики могут оказаться и небьющимися.
?

 Профиль  
                  
 
 
Сообщение26.09.2007, 23:16 
Заслуженный участник


14/01/07
787
19 - много.
Небьющиеся - означает: неразбивающиеся никогда :)

 Профиль  
                  
 
 
Сообщение26.09.2007, 23:21 
Модератор
Аватара пользователя


11/01/06
5702
Старая задача. По слухам с интервью в Microsoft.

А правильный ответ здесь: 14.

 Профиль  
                  
 
 
Сообщение26.09.2007, 23:27 
Заслуженный участник
Аватара пользователя


01/03/06
13626
Москва
neo66 писал(а):
Небьющиеся - означает: неразбивающиеся никогда
Спасибо, сейчас запишу, а то я все время забываю смысл этого термина. :oops:

 Профиль  
                  
 
 
Сообщение27.09.2007, 06:05 
Заслуженный участник
Аватара пользователя


21/12/05
5931
Новосибирск
Есть и обобщение: N этажей и n шариков.

 Профиль  
                  
 
 
Сообщение27.09.2007, 08:42 
Заслуженный участник


09/02/06
4398
Москва
maxal писал(а):
Старая задача. По слухам с интервью в Microsoft.

А правильный ответ здесь: 14.

Более оптимально стратегия, m, 2m-1, 3m-3,...(k+1)(m-k/2)>N. Отсюда максимальное количество ходов m>(N/(k+1)+k/2). Минумум по k получается $m=[\frac{\sqrt{8N+1}+1}{2}]$

 Профиль  
                  
 
 
Сообщение27.09.2007, 10:29 
Заслуженный участник


14/01/07
787
Эта задача предлагалась в свое время на вступительных экзаменах в НМУ. Хороша, а?

 Профиль  
                  
 
 
Сообщение27.09.2007, 10:48 
Заслуженный участник


09/02/06
4398
Москва
Для n шариков ответ получается - количества шагов равна m, где C(m,n)<=N<C(m+1,n) начиная с некоторого N>N0.

 Профиль  
                  
 
 
Сообщение27.09.2007, 11:00 
Заслуженный участник
Аватара пользователя


21/12/05
5931
Новосибирск
Нет, не так, но ключ у Вас есть.

 Профиль  
                  
 
 
Сообщение27.09.2007, 11:36 
Заслуженный участник


09/02/06
4398
Москва
bot писал(а):
Нет, не так, но ключ у Вас есть.

Почему не так. При n=1, очевидно, что m=N, согласуется с указанной формулой. Оно согласуется и при n=2 (хотя для индукции это не обязательно).
Докажем по индукции. Пусть это верно для N>C(2n,n)=N0 для всех n, что минимальное число ходов определяется из указанного свойства. Тогда вычисляем максимальное значение N для которого достаточно m ходов как сумму C(m,n)+C(m-1,n)+...=C(m+1,n).
Правда здесь надо биномиальные коэффициенты надо заменить функциями f(m,n) удовлетворяющим условиям f(1,n)=1, n>=1, f(m+1,n)=f(m,n-1)+f(m,n).

 Профиль  
                  
 
 
Сообщение27.09.2007, 14:17 
Заслуженный участник


14/01/07
787
Руст писал(а):
maxal писал(а):
Старая задача. По слухам с интервью в Microsoft.

А правильный ответ здесь: 14.

Более оптимально стратегия, m, 2m-1, 3m-3,...(k+1)(m-k/2)>N. Отсюда максимальное количество ходов m>(N/(k+1)+k/2). Минумум по k получается $m=[\frac{\sqrt{8N+1}+1}{2}]$


Это не более оптимальная стратегия, а просто оптимальная.
Что касается обобщений - это уже чистая техника и ничего нового не привносит. Забавно, правда, что 7 шариков (для 100 этажей) - минимизирует число испытаний.

 Профиль  
                  
 
 
Сообщение27.09.2007, 14:28 
Заслуженный участник


09/02/06
4398
Москва
neo66 писал(а):
Что касается обобщений - это уже чистая техника и ничего нового не привносит. Забавно, правда, что 7 шариков (для 100 этажей) - минимизирует число испытаний.

То, что k шариков минимизирует (для 2^{k-1}<=N<2^k этажей) очевидна делением попалам.
Общий ответ для количества шагов m получается из условия
$f(m-1,n)<N<=f(m,n),$ где
$$f(m,n)=C_{m+n-1}^{n}.$$

 Профиль  
                  
 
 
Сообщение27.09.2007, 16:43 
Заслуженный участник
Аватара пользователя


01/03/06
13626
Москва
neo66 писал(а):
Это не более оптимальная стратегия, а просто оптимальная.
А как это доказать?

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 22 ]  На страницу 1, 2  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: lel0lel


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group