*ANNA* писал(а):
Brukvalub, спасибо за ответы. А вы не подскажете, можно ли доказывать, например, такое утверждение:
, взяв вместо A, B, C конкретные множества, например A = {1,2,3}, B = {4,5,6}, C = {7,8,9}? Или это всё будут лишь частные утверждения, а не доказательство? И можно ли как-нибудь увидеть несовершенство такого "конкретного" подхода, то есть привести пример, в котором, например, для A = {1,2}, B = {3,4} утверждение выполняется, а уже для A = {5,6}, B = {7,8} оно неверно? (Не обязательно на числовых множествах, можно и на любых других).
Ещё раз спасибо.
Можно. Когда нам давали подобные задания, я их таким способом и проверял
. В случае трех множеств надо нарисовать диаграмму Эйлера-Венна и в каждой из областей, на которые разбивается плоскость поставить ровно одному числу. Потом записать A={...}, B={...}, C={...}. Посчитать левую часть , правую и убедиться что получается одно и то же.
Еще были задания такого рода "проверить, что равенство X выполняется тогда и только тогда, когда справедливо равенство Y". Это надо в X посчитать правую часть, левую часть и взять их симметричекую разность (обьединение минус пересечение). Тоже самое делаем с Y. Если получаются в обоих случаях одно и то же, то это и есть доказательство.
Еще бывают задания "проверить, что если X, то Y". Надо в X посчитать правую часть, левую часть, взять их симметричекую разность. Потом из исходных множеств A, B, С выкинуть полученный набор чисел и проверить Y.
В случае четырех и более множеств диаграмму Венна уже не нарисуешь, поэтому приходится нумеровать множества аналитически (на примере трех множеств для краткости)
ABC 1
AB-C 2
A-BC 3
A-B-C 4
-ABC 5
-AB-C 6
-A-BC 7
-A-B-C 8
A={1,2,3,4}, B={1,2,5,6}, C={1,3,5,7}