Задача красивая, хорошая. Но почти любую красивую и хорошую задачу можно превратить в скучную и нудную, но вполне решаемую.
Без потери общности введем систему координат с началом в центре единичной окружности, точки
и
будут иметь координаты
и
соответственно, 4 оставшиеся точки имеют свободные координаты, но лежат на единичной окружности, так что пара координат каждой точки имеют вполне однозначную функциональную связь, равенство двух отрезков дает нам еще одну связь, далее записываем по известным формулам уравнения всех заданных диагоналей - прямых, проходящих через пары точек, находим по не менее известным формулам точки пересечения нужных прямых, и (применяя вышеописанные уравнения связей на координаты), доказываем, что точка
является серединой
- через координаты это условие записывается тривиально, как среднее арифметическое соответствующих координат отрезка - и не надо доказывать что они лежат на одной прямой, это последует автоматически.
Расписывать полностью поленился, проверил в Геогебре - все так. Простите, если предложил занудство вместо красоты и элегантности, но подобным методом я решил достаточно задач, без применения "теоремы Паскаля для самопересекающегося шестиугольника" и прочих экзотических планиметрических теорем