Не знаю, как такие задачи решаются по науке. Придумал способ.
0) Нужно посчитать
1) Узнаём в
верхнюю интегральную сумму
очевидно-какой-функции (это я оставляю вам).
2) Радостно считаем интеграл. Расстраиваемся, что он оказался равным
3) Понимаем, что
всегда в точности равен сумме
площадей
криволинейных трапеций под функцией
, а вот первая сумма - лишь сумма площадей
прямоугольников. Преобразуем исходную сумму к виду
4) Считаем интеграл, оцениваем член суммы до первого же ненулевого члена. Для проверки - получится
5) Снова видим интегральную суммы уже другой функции
. Честно считаем. O-большое вклада в сумму не даст, так как меньше на порядок.
6) Если получите
, то решили правильно (если я нигде не обсчитался).