2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Экспонента и синус комплексного аргумента
Сообщение17.05.2013, 23:24 
Аватара пользователя
На Всесоюзной Студенческой Олимпиаде 1975г. предлагалась следующая задача:

Доказать или опровергнуть $$z_1+e^{z_1}=z_2+e^{z_2}\quad\to\quad \sin{z_1}=\sin{z_2}$$
(всяко $z_1, z_2\in\mathbb C$, иначе задача предлагалась бы на занятии маткружка старшеклассников)

Очень частный случай ($z_1=x, \quad z_2=y,\quad x, y\in\mathbb R$) решается тривиально:
$$(x+e^x)'=e^x+1>0\quad\to$$ функция монотонно возрастает, а значит, $x=y$ и следовательно их синусы равны друг другу.

Для $z_1, z_2\in\mathbb C$ чувствую, что ответ будет "нет".
Альфа показывает, что уравнение $z+e^z=0$ имеет бесконечно много решений. Вряд ли у всех этих решений синусы одинаковы.

Но мне не хватает знаний, чтобы это доказать.
Что такое вообще синус комплексного числа? А экспонента комплексного числа? Я знаю только одну, почти школьную, формулу: $e^{i \pi} + 1 = 0$, а больше ничего пока не знаю.

Пожалуйста, помогите решить.

 
 
 
 Re: Экспонента и синус комплексного аргумента
Сообщение17.05.2013, 23:40 
Аватара пользователя
Дак больше почти ничего и не надо.
То есть так: $e^{iz}=\cos z+i\sin z$ - отсюда проистекает объяснение комплексных экспонент через обычные сикось-косинусы, и наоборот.

 
 
 
 Re: Экспонента и синус комплексного аргумента
Сообщение17.05.2013, 23:43 
Аватара пользователя
ИСН в сообщении #725251 писал(а):
Дак больше почти ничего и не надо.
То есть так: $e^{iz}=\cos z+i\sin z$ - отсюда проистекает объяснение комплексных экспонент через обычные сикось-косинусы, и наоборот.

Всё равно не соображу, как контрпример построить. Альфа делает это через функцию $W$.

 
 
 
 Re: Экспонента и синус комплексного аргумента
Сообщение18.05.2013, 00:45 
Ktina в сообщении #725252 писал(а):
Всё равно не соображу, как контрпример построить. Альфа делает это через функцию $W$.

А он и не будет простой. Тут задачу можно немного переформулировать. Распишем подробно уравнение
$\[{x_1} + i{y_1} + {e^{{x_1}}}(\cos {y_1} + i\sin {y_1}) = {x_2} + i{y_2} + {e^{{x_2}}}(\cos {y_2} + i\sin {y_2})\]$
Ясно, что равенство будет когда действительная часть равна действительной а мнимая мнимой. То же самое делаем для второго уравнения
$\[\sin {x_1} \cdot {\mathop{\rm ch}\nolimits} {y_1} + i\cos {x_1} \cdot {\mathop{\rm sh}\nolimits} {y_1} = \sin {x_2} \cdot {\mathop{\rm ch}\nolimits} {y_2} + i\cos {x_2} \cdot {\mathop{\rm sh}\nolimits} {y_2}\]$
Теперь нужно показать, что из
$\[\left\{ \begin{array}{l}
{x_1} + {e^{{x_1}}}\cos {y_1} = {x_2} + {e^{{x_2}}}\cos {y_2}\\
{y_1} + {e^{{x_1}}}\sin {y_1} = {y_2} + {e^{{x_2}}}\sin {y_2}
\end{array} \right.\]$

НЕ следует

$\[\left\{ \begin{array}{l}
\sin {x_1} \cdot {\mathop{\rm ch}\nolimits} {y_1} = \sin {x_2} \cdot {\mathop{\rm ch}\nolimits} {y_2}\\
\cos {x_1} \cdot {\mathop{\rm sh}\nolimits} {y_1} = \cos {x_2} \cdot {\mathop{\rm sh}\nolimits} {y_2}
\end{array} \right.\]$

Вот показать обратное (т.е. что из $\[\sin {z_1} = \sin {z_2}\]$ не следует $\[{z_1} + {e^{{z_1}}} = {z_2} + {e^{{z_2}}}\]$) элементарно - т.к. действительная часть в одином случае периодична, а в другом нет.

А вот с вопросом задачи труднее. Здесь вряд-ли можно получить контрпример в виде элементарной функции, т.к. приходится решать уравнения, где неизвестное стоит и в "явном" виде и в показателе экспоненты, откуда и лезут функции Ламберта.

P.S.Надеюсь в выкладках не напортачил.

 
 
 
 Re: Экспонента и синус комплексного аргумента
Сообщение18.05.2013, 00:47 
Аватара пользователя
Попробуем найти решения $z_1, z_2$ так, чтобы их синусы были точно не равны. Ну, например, в виде $z_2=z_1+1$. Подстановка это равенства в исходное уравнение дает $e^{z_1}=-\frac{1}{e-1}$. Конечно, в вещественных числах это равенство не решается, но в комплексных - пожалуйста! В комплексном случае логарифма не существует только у нуля.
Итак, числа $z_1=-\ln(e-1)+i\pi$ и $z_2=1-\ln(e-1)+i\pi$ дают требуемый контрпример.

 
 
 
 Re: Экспонента и синус комплексного аргумента
Сообщение18.05.2013, 04:51 
provincialka в сообщении #725263 писал(а):
Попробуем найти решения $z_1, z_2$ так, чтобы их синусы были точно не равны. Ну, например, в виде $z_2=z_1+1$.
Вообще-то уравнение $\sin{z_1}=\sin{(z_1+1)}$ имеет корни. Но все они вещественны, поэтому контрпример корректен.

 
 
 
 Re: Экспонента и синус комплексного аргумента
Сообщение18.05.2013, 06:09 
Учитывая, что задача предлагалась в третьей секции (гуманитарные факультеты, институт лёгкой промышленности, институт пищевой промышленности и т.п.) её, всё-таки, предполагалось решать в действительных числах :-) .

В комплексных числах легко показать, что все корни уравнения $e^z+z=\operatorname{const}$ можно записать в виде двусторонней последовательности $(z_n)_{n\in \mathbb{Z}}$ и при этом $\lim\limits_{n\to\infty}\operatorname{Im}z_n = \infty.$ Следовательно, и $\lim\limits_{n\to\infty}|\sin z_n| = \infty.$

 
 
 
 Re: Экспонента и синус комплексного аргумента
Сообщение18.05.2013, 10:39 
Аватара пользователя
nnosipov в сообщении #725290 писал(а):
provincialka в сообщении #725263 писал(а):
Попробуем найти решения $z_1, z_2$ так, чтобы их синусы были точно не равны. Ну, например, в виде $z_2=z_1+1$.
Вообще-то уравнение $\sin{z_1}=\sin{(z_1+1)}$ имеет корни. Но все они вещественны, поэтому контрпример корректен.
Спасибо! Я как-то об этом не подумала :oops:

 
 
 [ Сообщений: 8 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group