2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Включение вектора в базис
Сообщение01.04.2013, 18:03 
*Доказать, что любой ненулевой вектор $x$ конечномерного линейного пространства может быть включен в какой-нибудь базис.

(Оффтоп)

С чего начать?

 
 
 
 Re: Включение вектора в базис
Сообщение01.04.2013, 18:19 
Докажите что к $n$ линейно независимым векторам, если они не образуют базис, можно добавить еще 1 линейно независимый с ними вектор.

 
 
 
 Re: Включение вектора в базис
Сообщение01.04.2013, 19:18 
Обозначим произвольный базис: $e=({e}_{1},{e}_{2},...,{e}_{n})$.
Тогда, в свою очередь, $x={x}_{1}{e}_{1}+...+{x}_{n}{e}_{n}$, где ${{x}_{1}}^{2}+...+{{x}_{n}}^{2}\neq 0$.
Если заменить ${e}_{k}$ на $x$, то система векторов $e=({e}_{1},...,{e}_{k},...,{e}_{n})$ так и останется базисом, в силу "невырожденности" вектора ${e}_{k}$.
Null

(Оффтоп)

Примерно в ту сторону? :-)

 
 
 
 Re: Включение вектора в базис
Сообщение01.04.2013, 19:24 
Примерно в ту. Посмотрите теорему Штейница о замене.

 
 
 
 Re: Включение вектора в базис
Сообщение01.04.2013, 19:27 
zychnyy в сообщении #704451 писал(а):
так и останется базисом
Неправда. Например, если $k\ne 1$, а $x=e_1$, то после замены $e_k$ на $x$ базис уменьшится на один вектор. А если $k\ne 1,2$, а $x=e_1+e_2$, то после замены $e_k$ на $x$ один из элементов этого якобы базиса будет выражаться через другие. Словом, есть куча случаев, когда такая замена не приведет к базису.

А у вас в курсе случайно не было какой-нибудь теоремы о линейно независимых множествах и их связи с базисами? Если была -- попробуйте ей воспользоваться.

 
 
 
 Re: Включение вектора в базис
Сообщение01.04.2013, 21:08 
Цитата:
Посмотрите теорему Штейница о замене.

AV_77 а без нее никак? :-)
AGu да, действительно. :-)
Цитата:
А у вас в курсе случайно не было какой-нибудь теоремы о линейно независимых множествах и их связи с базисами? Если была -- попробуйте ей воспользоваться.

Я пытаюсь самостоятельно осваивать. Курс был, но поверхностный.
Кстати, в этом пособии(откуда взята задача) есть указание к решению задачи. В этом указании меня смутило следующее: ${x}_{i}\neq 0$. И почему? :-)

 
 
 
 Re: Включение вектора в базис
Сообщение01.04.2013, 21:18 
zychnyy в сообщении #704515 писал(а):
а без нее никак?

Можно и без нее. Но вы все же посмотрите доказательство, оно как раз на вашей идее основано :-)

А можно пойти путем, который предлагал Null и построить базис начиная с вашего вектора.

 
 
 
 Re: Включение вектора в базис
Сообщение01.04.2013, 21:35 
Цитата:
Можно и без нее. Но вы все же посмотрите доказательство, оно как раз на вашей идее основано

AV_77 впечатлило. :-) Постараюсь разобраться с доказательством.
Цитата:
А можно пойти путем, который предлагал Null и построить базис начиная с вашего вектора.

AV_77 эммм... Через дополнение ненулевого вектора до базиса?

 
 
 
 Re: Включение вектора в базис
Сообщение01.04.2013, 21:36 
zychnyy в сообщении #704531 писал(а):
Через дополнение ненулевого вектора до базиса?

Конечно. Сначала добавим вектор, линейно независимый от первого, затем вектор, линейно независимый от первых двух и т.д.

 
 
 
 Re: Включение вектора в базис
Сообщение02.04.2013, 05:24 

(Оффтоп)

Всем ответившим - спасибо.

 
 
 
 Re: Включение вектора в базис
Сообщение02.04.2013, 11:05 
zychnyy в сообщении #704451 писал(а):
Обозначим произвольный базис: $e=({e}_{1},{e}_{2},...,{e}_{n})$.
Тогда, в свою очередь, , где ${{x}_{1}}^{2}+...+{{x}_{n}}^{2}\neq 0$.
Если заменить ${e}_{k}$ на $x$, то система векторов $e=({e}_{1},...,{e}_{k},...,{e}_{n})$ так и останется базисом, в силу "невырожденности" вектора ${e}_{k}$.
Null

(Оффтоп)

Примерно в ту сторону? :-)


данный вектор разложенный по базису {${e_n}$} в пространстве $V_n$
$x={x}_{1}{e}_{1}+...+{x}_{n}{e}_{n}$
вам нужно доказать, что существует другой базис скажем {${e'_n}$}
для которого все скалярные произведения с n-1 векторами базиса {${e_n}$} будут давать 0, а $(x,e'_{n})=1$ (для нормированного вектора x)

 
 
 
 Re: Включение вектора в базис
Сообщение02.04.2013, 17:46 
stanislav71 в сообщении #704698 писал(а):
скалярные произведения с n-1 векторами

скалярное произведение может быть и не задано.

 
 
 [ Сообщений: 12 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group