Последний раз редактировалось Roy Rogers 22.02.2013, 23:01, всего редактировалось 1 раз.
Здравствуйте. Я пытаюсь запрограммировать одномерный метод крупных частиц первого порядка без модификаций в точности по книжке Белоцерковский О.М., Давыдов Ю.М. Метод крупных частиц в газовой динамике. Решил протестировать на задаче Сода (то есть задача о распаде разрыва с начальными условиями слева , , и справа , , ). Получается не то, чтобы очень хорошо, но терпимо Хотя провал давления в центре меня несколько смущает. Явно от аналитического решения отличается. Можно ли это как-то улучшить? И более важно то, что когда ударная волна доходит до правой границы расчетной области, схему разносит. Я там ставлю условие отражения . Как быть? Буду очень благодарен за любую помощь. Прилагаю свой код на фортране.
program KRUCHA_1D_Sode
implicit none
! Variables
integer, parameter:: Nt=2500, Nx=300
real Lx, dx, dt, gamma, Ku, TIME, pr, pl, ur, ul, flowR, flowL, dMR, dML, Xij, vc, vmax
real u(0:Nt,0:Nx+1), rho(0:Nt,0:Nx+1), p(0:Nt,0:Nx+1), E(0:Nt,0:Nx+1)
real ui(0:Nx+1), rhoi(0:Nx+1), pi(0:Nx+1), Ei(0:Nx+1)
integer n, i, DL, DR
! Body of KRUCHA_1D_Sode
Lx=2.0
gamma=1.4
! Initial conditions
do i=0, Nx+1
if(i.le.(Nx/2)) then
u(0,i)=0.0
rho(0,i)=1.0
p(0,i) = 1.0
E(0,i) = p(0,i)/(rho(0,i)*(gamma-1))
else
u(0,i)=0.0
rho(0,i)=0.125
p(0,i) = 0.1
E(0,i) = p(0,i)/(rho(0,i)*(gamma-1))
endif
end do
! Boundary conditions at initial step
u(0,0) = - u(0,1); u(0,Nx+1) = -u(0,Nx)
! Time & scheme parameters
TIME = 0.0
Ku = 0.1
dt = Ku*dx/(sqrt(gamma*p(0,1)/rho(0,1)))
dx=Lx/Nx
! Main cycle
do n=0, Nt-1
TIME = TIME + dt
vmax = 0.0
! I. Euler step
do i=1,Nx
pr = 0.5*(p(n,i+1)+p(n,i)); pl = 0.5*(p(n,i-1)+p(n,i))
ur = 0.5*(u(n,i+1)+u(n,i)); ul = 0.5*(u(n,i-1)+u(n,i))
ui(i) = u(n,i) - (pr - pl)*dt/(dx*rho(n,i))
Ei(i) = E(n,i) - (pr*ur - pl*ul)*dt/(dx*rho(n,i))
end do
! Boundary conditions at Euler step
ui(0) = -ui(1); Ei(0) = Ei(1)
ui(Nx+1) = -ui(Nx); Ei(Nx+1) = Ei(Nx)
! Lagrange & final step cycle
do i=1,Nx
! II. Lagrange step
flowR = 0.5*(ui(i) + ui(i+1))
if (flowR.ge.0) then
dMR = rho(n,i)*flowR*dt; DR = 0
else
dMR = rho(n,i+1)*flowR*dt; DR = 1
end if
flowL = 0.5*(ui(i) + ui(i-1))
if (flowL.ge.0) then
dML = rho(n,i-1)*flowL*dt; DL = 1
else
dML = rho(n,i)*flowL*dt; DL = 0
end if
! III. Final step
rho(n + 1,i) = (rho(n,i)*dx + (dML - dMR))/dx
Xij = rho(n+1,i)*dx - (1-DR)*dMR - (1-DL)*dML
u(n+1,i) = (DL*dML*ui(i-1) - DR*dMR*ui(i+1) + ui(i)*Xij)/(rho(n+1,i)*dx)
E(n+1,i) = (DL*dML*Ei(i-1) - DR*dMR*Ei(i+1) + Ei(i)*Xij)/(rho(n+1,i)*dx)
p(n+1,i) = (gamma - 1)*rho(n+1,i)*(E(n+1,i) - 0.5*u(n+1,i)*u(n+1,i))
! Maximum velocity
vc = Abs(u(n+1,i))+Sqrt(gamma*p(n+1,i)/rho(n+1,i))
if (vc.gt.vmax) then ; vmax = vc; endif
end do
! Boundary conditions at final step
rho(n+1,0) = rho(n+1,1); u(n+1,0) = -u(n+1,1); p(n+1,0) = p(n+1,1); E(n+1,0) = E(n+1,1)
rho(n+1,Nx+1) = rho(n+1,Nx); u(n+1,Nx+1) = -u(n+1,Nx); p(n+1,Nx+1) = p(n+1,Nx); E(n+1,Nx+1) = E(n+1,Nx);
! Time step
dt = Ku*dx/vmax
end do
end program
|