Ложным я считаю утверждение, что оператор-радикал, представляемый в виде указанных рядов не локален, в смысле размазывания каждой точки исходной функции или ее смещения по утверждению г.Someone.
Теорема Peetre утверждает, грубо говоря, что если
- такой линейный оператор, что для каждой бесконечно дифференцируемой функции
(с компактным носителем) носитель функции
содержится в носителе функции
, то
- дифференциальный оператор конечного порядка.
Носителем функции называется замкнутое множество, вне которого функция равна нулю.
Из указанной теоремы сразу следует, что Ваш оператор не удовлетворяет условию локальности, то есть, существует бесконечно дифференцируемая функция
, которую Ваш оператор
преобразует в функцию
, которая не равна нулю там, где равна нулю сама функция
.
Сначала предполагаем, что имеет место соотношение между производной
и радикал-оператором, отвечающее нашему уравнению, а после определения уравнения Эйлера вариационным методом убеждаемся, что предполагаемое соотношение обеспечивает нулевое значение вариации, и, следовательно, является искомым уравнением.
Разве в вариационном методе есть запрет на предположения о тех или иных соотношениях? В результате моего предположения лагранжиан по-прежнему имеет непростую форму, и уж точно не равняется нулю.Тем не менее, полученное уравнение Эйлера обеспечивает нулевую вариацию при нашем предположении
1) Ещё раз поясняю. Ваша ошибка имеет логическую природу и называется порочным кругом: чтобы доказать некоторое утверждение
, Вы делаете предположение, что утверждение
верно, и используете это в доказательстве. Здесь совершенно не Важно, что разрешается и что не разрешается в вариационном исчислении.
2) В любой теории есть запрет на использование произвольных неизвестно откуда взявшихся соотношений.
3) Я не вижу в Ваших
рассуждениях никакого уравнения Эйлера. Вы, используя произвольно взятое соотношение (именно то, которое хотите доказать), изменили первоначальный лагранжиан. Уравнение Эйлера для изменённого лагранжиана не совпадает с уравнением Эйлера для первоначального Лагранжиана (как минимум, Вы не доказали, что совпадает).
4) Да, в вариационном исчислении запрещается накладывать на функции какие-либо дополнительные ограничения (сверх тех, которые уже имеются в условии задачи).
Очевидно, результирующая волновая функция, представляющая сумму спектральных функций, в этом случае также является аналитической.
То есть, Вы запрещаете рассматривать локализованные (в конечной области) электроны и позитроны? Указанные Вами функции "размазаны" по всему пространству.
Кроме того, это не важно. Теорема Peetre утверждает, что бесконечная дифференцируемость не спасает. В ней речь идёт как раз о бесконечно дифференцируемых функциях.
Физики всегда имеют дело с ограниченными импульсами частиц. При этом в ограниченной области набор указанных спектральных функций конечен и характеризуется величиной импульсов
Это с какой стати?
(Оффтоп)
P.S. Обращаю Ваше внимание на то, что, когда автор дискуссионной теории начинает демонстративно "не понимать" своих оппонентов, тема довольно быстро попадает в Пургаторий. Как только модераторы дискуссионного раздела обращают внимание на данную тему.