2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Дополнение к основным правилам форума:
Любые попытки доказательства сначала должны быть явно выписаны для случая n=3



Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней. На страницу 1, 2  След.
 
 Теорема Ферма, сумма кубов и пирамида Хеопса
Сообщение19.01.2013, 13:45 


17/05/11
27
Здравствуйте.
Рассмотрим квадратное уравнение:
$x^2+y^2=z^2$ (1)
Известно, что любое решение уравнения (1) , для которого y чётно, выражается формулами :
$x=m^2-n^2$; (2)
$y=2mn$; (3)
$z=m^2+n^2$, (4)
где m>n.
Преобразуем (1):
$x^2=z^2-y^2=(z-y)(z+y)$ , (5)
где
$z-y=(m-n)^2$ , (6)
$z+y=(m+n)^2$ . (7)
Полагая
$m-n=1$ , (8)
получаем:
$z-y=1$, (9)
$x^2=z+y=2z-1=2y+1$ (10)
Т.о., квадрат любого числа всегда можно представить в виде разности квадратов двух чисел, отличающихся друг от друга на единицу:
$5^2=13^2-12^2$,
$7^2=25^2-24^2$... (11)
Для чётных чисел:
$6^2={18,5}^2-{17,5}^2$ (12)
Предположим, что:
$x^4+y^4=z^4$ (13)
где х,y,z- взаимно простые целые числа.
Перепишем (13) в виде:
$(x^2)^2+(y^2)^2=(z^2)^2$ (14)
Это квадратное уравнение относительно $x^2$, $y^2$,$z^2$ и с учётом (1)-(4) существуют
такие взаимно простые числа M и N<M разной чётности, что:
$x^2=m^2-n^2$; (15)
$y^2=2mn$; (16)
$z^2=m^2+n^2$, (17)
где m>n.
С учётом сказанного выше положим:
$m-n=1$ , (18)
Из (16)- (17) следует, что
$z^2-y^2=(m-n)^2=1$ (19)
В целых числах это уравнение неразрешимо, поэтому и исходное
предположение (13) – неверно. Т.к. рассуждения справедливы для
любого чётного показателя в (13), большего 2, то для чётных степеней можно считать
теорему Ферма доказанной.
Я уже приводил это доказательство в работе, размещённой год назад на этом сайте
(«Великая теорема Ферма. Полное элементарное доказательство») и никаких
вразумительных контраргументов не последовало.
Однако, пойдём дальше. Вернёмся к формулам (11)-(12).
Т. к. любое число можно представить в виде квадрата:
$5=(\sqrt5)^2$ (20)
, то можно сказать, что любое число всегда можно представить в виде разности квадратов двух чисел, отличающихся друг от друга на единицу:
$5=3^2-2^2$,
$7=4^2-3^2$... (21)
$4=2,5^2-1,5^2$
Рассмотрим последовательность кубов чисел от 1до n:
$1^3, 2^3, 3^3 ....n^3$ (22)
Представим каждый куб в виде :
$2^3=2(2^2)=(1,5^2-0,5^2)2^2=3^2-1^2$ (23)
$3^3=3(3^2)=(2^2-1^2)3^2=6^2-3^2$ (24)
$5^3=5(5^2)=(3^2-2^2)5^2=15^2-10^2$ (25)
И запишем последовательность в виде:
$1^3=1^-0$
$2^3=3^2-1^2$
$3^3=6^2-3^2$ (26)
$4^3=10^2-6^2$
$5^3=15^2-10^2$
........
Просуммируем левые и правые части уравнений:
$1^3+2^3+3^3+....+n^3=(1+2+3+...+n)^2$ (27)
Сумма кубов чисел от 1 до n есть квадрат суммы этих чисел.
Интересно представить это геометрически.
Если по осям x-y последовательно откладывать 1, затем 2 и т. д. , то площадь каждого последующего квадрата, построенного на каждом шаге, за исключением площади предыдущих будет кубом.
Допустим, сделали 7 шагов, значит, площадь квадрата
$(1+2+..+7)^2=28^2$
При 6-ти шагах площадь $21^2$, таким образом:
$7^3=28^2-21^2$
И действительно:
$7^3=7(7^2)=(4^2-3^2)7^2=28^2-21^2$
Геометрически можно представить (27) по-другому: вокруг квадрата со стороной 1
чертим квадраты со сторонами 3,6,10,15…(см.(26)) и площадь каждого последующего квадрата, построенного на каждом шаге, за исключением площади предыдущих будет кубом .
Если в формуле (27) взять n=21,то
$1^3+2^3+3^3+....+21^3=231^2$ . (28)
Интересно, что сторона основания пирамиды Хеопса – практически 231 м.

 Профиль  
                  
 
 Re: Теорема Ферма, сумма кубов и пирамида Хеопса
Сообщение19.01.2013, 13:57 
Заслуженный участник


20/12/10
8858
VALERI2 в сообщении #673622 писал(а):
Я уже приводил это доказательство в работе, размещённой год назад на этом сайте
(«Великая теорема Ферма. Полное элементарное доказательство») и никаких
вразумительных контраргументов не последовало.
Ну хоть бы новенькое что придумали, чем прошлогоднюю ерунду переписывать.

 Профиль  
                  
 
 Re: Теорема Ферма, сумма кубов и пирамида Хеопса
Сообщение19.01.2013, 14:36 


17/05/11
27
Ваш контраргумент очень вразумителен!

 Профиль  
                  
 
 Re: Теорема Ферма, сумма кубов и пирамида Хеопса
Сообщение19.01.2013, 14:52 
Заслуженный участник


08/04/08
8556
VALERI2 в сообщении #673622 писал(а):
Предположим, что:
$x^4+y^4=z^4$ (13)
VALERI2 в сообщении #673622 писал(а):
В целых числах это уравнение неразрешимо, поэтому и исходное
предположение (13) – неверно. Т.к. рассуждения справедливы для
любого чётного показателя в (13), большего 2, то для чётных степеней можно считать
теорему Ферма доказанной.
Я уже приводил это доказательство в работе, размещённой год назад на этом сайте
(«Великая теорема Ферма. Полное элементарное доказательство») и никаких
вразумительных контраргументов не последовало.
Вы вообще книжки читали хоть какие-нибудь?! Тот факт, что уравнение $x^4+y^4=z^4$ неразрешимо, доказал еще Ферма, причем от него осталось явное доказательство, которое теперь и приводится во всех книгах. Т.е. четный показатель уже с 17-го века никому неинтересен.

Остальное к ВТФ не относится почти никак.

 Профиль  
                  
 
 Re: Теорема Ферма, сумма кубов и пирамида Хеопса
Сообщение19.01.2013, 14:53 
Заслуженный участник
Аватара пользователя


13/08/08
14463
VALERI2, а вот картинка к сумме кубов
http://dxdy.ru/post251121.html#p251121

 Профиль  
                  
 
 Re: Теорема Ферма, сумма кубов и пирамида Хеопса
Сообщение19.01.2013, 14:56 
Заслуженный участник


20/12/10
8858
VALERI2 в сообщении #673622 писал(а):
С учётом сказанного выше положим:
$m-n=1$ , (18)
Ещё раз: введение дополнительного ограничения $m-n=1$ не обосновано. Приведите доказательство того, что $m-n=1$.

-- Сб янв 19, 2013 19:00:38 --

Sonic86 в сообщении #673652 писал(а):
Тот факт, что уравнение $x^4+y^4=z^4$ неразрешимо, доказал еще Ферма
ТС настаивает на том, что он тоже доказал этот факт, чего на самом деле, конечно, не наблюдается.

 Профиль  
                  
 
 Re: Теорема Ферма, сумма кубов и пирамида Хеопса
Сообщение19.01.2013, 15:27 


17/05/11
27
Уважаемый Заслуженный участник Sonic86!
Создаётся впечатление, что Вы знаете только один чётный показатель - 4.
Ну, извините...

-- Сб янв 19, 2013 16:30:03 --

Уважаемый gris, картинка красивая. Спасибо.

-- Сб янв 19, 2013 16:36:15 --

Уважаемый nnosipov, я Вам уже объяснял в прошлом году, что
$m-n=1$ , конечно же , частный случай. Но ведь правило на то и есть правило, что ему
должны подчиняться ВСЕ ЧАСТНЫЕ СЛУЧАИ.

 Профиль  
                  
 
 Re: Теорема Ферма, сумма кубов и пирамида Хеопса
Сообщение19.01.2013, 16:07 
Заслуженный участник


20/12/10
8858
VALERI2 в сообщении #673675 писал(а):
Но ведь правило на то и есть правило, что ему
должны подчиняться ВСЕ ЧАСТНЫЕ СЛУЧАИ.
Такие логические ошибки со временем, видимо, только усугубляются. Но Вы всё же попробуйте найти в какой-нибудь книжке доказательство неразрешимости уравнения $x^4+y^4=z^4$ и сравнить со своим, хотя бы ради любопытства.

 Профиль  
                  
 
 Re: Теорема Ферма, сумма кубов и пирамида Хеопса
Сообщение19.01.2013, 16:13 
Заслуженный участник
Аватара пользователя


23/07/05
17973
Москва
VALERI2 в сообщении #673675 писал(а):
Но ведь правило на то и есть правило, что ему
должны подчиняться ВСЕ ЧАСТНЫЕ СЛУЧАИ.
Сформулируйте это правило.

Возьмём, например, в равенствах (2), (3), (4) $m=8$, $n=5$. Тогда $x=39$, $y=80$, $z=89$. Как здесь получить $m-n=1$? Продемонстрируйте, пожалуйста.

 Профиль  
                  
 
 Re: Теорема Ферма, сумма кубов и пирамида Хеопса
Сообщение19.01.2013, 17:02 


17/05/11
27
Уважаемый Sоmeone.
Ваш пример -такой же частный случай.
А правило (лемма) цитирую из "Введения в теорию алгебраических чисел" М.М.Постникова:
"Для ЛЮБЫХ взаимно простых положительных чисел m и n разной чётности формулы (2)-(4) доставляют состоящее из положительных целых чисел
примитивное решение уравнения (1) с чётным y. Обратно, ЛЮБОЕ состоящее из положительных чисел примитивное решение (x,y,z) уравнения (1), для которого
y чётно, выражается формулами (2)-(4), где m и n - взаимно простые числа разной чётности" (n меньше m и нумерация формул соответствует моему тексту).
Обращаю внимание на слово "ЛЮБЫЕ" , т.е. $m-n=1$ (частный случай) должен подчиняться этому правилу.

 Профиль  
                  
 
 Re: Теорема Ферма, сумма кубов и пирамида Хеопса
Сообщение19.01.2013, 17:04 
Заслуженный участник
Аватара пользователя


18/12/07
762
VALERI2 в сообщении #673622 писал(а):
$1^3+2^3+3^3+....+21^3=231^2$ . (28)
Интересно, что сторона основания пирамиды Хеопса – практически 231 м.

Но самое интересное, что строители основания пирамиды Хеопса пользовались современной метрической системой :shock:

 Профиль  
                  
 
 Re: Теорема Ферма, сумма кубов и пирамида Хеопса
Сообщение19.01.2013, 17:10 
Заслуженный участник


20/12/10
8858
VALERI2, а почему Вы выбрали именно этот частный случай? Почему не $m-n=3$, например? Не кажется ли Вам, что для того, чтобы сделать общее утверждение (о несуществовании никаких решений у уравнения $x^4+y^4=z^4$), нужно рассмотреть ВСЕ частные случаи?

 Профиль  
                  
 
 Re: Теорема Ферма, сумма кубов и пирамида Хеопса
Сообщение19.01.2013, 17:59 


17/05/11
27
Уважаемый Коровьев, полностью с Вами согласен.
Похоже, строители были не глупее нас.

-- Сб янв 19, 2013 19:01:41 --

Уважаемый nnosipov, потому что этого достаточно.

 Профиль  
                  
 
 Re: Теорема Ферма, сумма кубов и пирамида Хеопса
Сообщение19.01.2013, 18:10 
Заслуженный участник


20/12/10
8858
VALERI2 в сообщении #673774 писал(а):
Уважаемый nnosipov, потому что этого достаточно.
А почему достаточно? Почему, например, уравнение $x^4+y^4=z^4$ не может иметь решений в случае, когда $m-n=3$ или $m-n=2013$? Как это следует из Ваших рассуждений?

 Профиль  
                  
 
 Re: Теорема Ферма, сумма кубов и пирамида Хеопса
Сообщение19.01.2013, 19:46 


17/05/11
27
Прочитайте же повнимательней лемму в моём ответе Semeone.
Есть правило, по которому ЛЮБОЕ сочетание чисел m и n даёт состоящее из целых положительных чисел решение x,y,z
уравнения (1) и обратно. $m-n=1$ - в том числе.
Но если переменные будут по (13), то уже НЕ ВСЕ m и n удовлетворяют этому правилу.
Т.е., если брать переменные в квадрате, четвёртой и т.д., то при $m-n=1$ или правило неверно, или переменные не могут быть
таковыми. Поскольку первое отпадает, остаётся второе.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней.  [ Сообщений: 26 ]  На страницу 1, 2  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group