2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Обобщения уравнения Пифагора
Сообщение16.12.2012, 19:43 
post391645.html#p391645
Как приведённые формулы решения для уравнения $nx^2+y^2=z^2$ из сообщения согласуются с формулами для уравнения $x^2+y^2=z^2$? Вроде бы при $n = 1$ получается другое. Или я не увидел чего? Где можно посмотреть, как решают обобщённое уравнение.
И были ли попытки обощить уравнение и далее - поставить коэффициенты при $y^2, z^2$, с двумя или тремя коэффициентами решать?

 
 
 
 Re: Обобщения уравнения Пифагора
Сообщение22.12.2012, 22:52 
К сведению.
yk2ru в сообщении #659385 писал(а):
Как приведённые формулы решения для уравнения $nx^2+y^2=z^2$ из сообщения согласуются с формулами для уравнения $x^2+y^2=z^2$?

Если считать исходным уравнение: $3x^2+y^2=z^2$
То благодаря геометрическим соображениям понятным из рисунка:

Изображение

можно записать эквивалентное утверждение:
$(2x+y-z)^2-x^2=2(z-y)(z-2x)$
$(x+y-z)(3x+y-z)=2(z-y)(z-2x)$

Не проверял, но возможно этого достаточно, что бы записать решения.
Для пифагоровых такой геометрический подход работает отлично.

 
 
 
 Re: Обобщения уравнения Пифагора
Сообщение23.12.2012, 00:26 
Аватара пользователя
yk2ru в сообщении #659385 писал(а):
Где можно посмотреть, как решают обобщённое уравнение.

Посмотрите книгу Острика и Цфасмана по алгебраической геометрии.

 
 
 
 Re: Обобщения уравнения Пифагора
Сообщение06.08.2013, 10:56 
мат-ламер в сообщении #662206 писал(а):
yk2ru в сообщении #659385 писал(а):
Где можно посмотреть, как решают обобщённое уравнение.

Посмотрите книгу Острика и Цфасмана по алгебраической геометрии.


Советую посмотреть Andreescu T. Andrica D. An introduction to Diophantine equations (GIL Publishing House) 2010
http://f3.tiera.ru/2/M_Mathematics/MT_Number%20theory/Andreescu%20T.,%20Andrica%20D.,%20Cucurezeanu%20I.%20An%20introduction%20to%20Diophantine%20equations..%20A%20problem-based%20approach%20(Birkhauser,%202010)(ISBN%200817645489)(O)(358s)_MT_.pdf
стр. 78-79
В этой книге решается более общее уравнение
$x^2+axy+bY^2=z^2$

 
 
 
 Re: Обобщения уравнения Пифагора
Сообщение06.08.2013, 11:31 
yk2ru
Берёте нечётные члены бинома Ньютона с разными (чередующимися) знаками в левой части. Берёте чётные члены бинома Ньютона с разными знаками в правой части.
Считаете сумму их квадратов. Получится $(a^2+b^2)^n$. Например, $n=4$:
Бином Ньютона будет $(a+b)^4=a^4+4a^3b+6a^2b^2+4ab^3+b^4$.
Берём $a^4-6a^2b^2+b^4$ в левой части - нечётные члены с разными (чередующимися) знаками. Ну и соответственно $4a^3b-4ab^3$ в правой части - чётные с разными знаками.
Тогда $(a^4-6a^2b^2+b^4)^2+(4a^3b-4ab^3)^2=(a^2+b^2)^4$
Точно так же и $(a^2+kb^2)^n$, только там будут вырожденные случаи.
___________________

Другими словами $a^2+kb^2=p^n$ прекрасно решается для любых $k,n$

 
 
 
 Re: Обобщения уравнения Пифагора
Сообщение28.09.2013, 12:04 
Другое обобщение уравнения Пифагора:
$x^2+y^2 + n =z^2$, где $n$ некая константа.
Не знаю, приводятся ли где решение для такого уравнения.
Пусть константа равна $1$, чтобы совсем упростить
$x^2+y^2 + 1 =z^2$.
Данное же уравнение можно рассматривать как частный случай уравнения
$x^2+y^2+r^2=z^2$.
В сообщении post271768.html#p271768 для него даётся такая формула:
$(a^2+b^2-c^2-d^2)^2+4(ac+bd)^2+4(ad-bc)^2=(a^2+b^2+c^2+d^2)^2$
Получается, что $a^2+b^2-c^2-d^2 = 1$ , то есть это уравнение следует решить для решения уравнения
$x^2+y^2 - z^2 = -1$.
И какое же из них проще решать?

 
 
 
 Re: Обобщения уравнения Пифагора
Сообщение28.09.2013, 12:48 
yk2ru в сообщении #768591 писал(а):
Данное же уравнение можно рассматривать как частный случай уравнения
$x^2+y^2+r^2=z^2$.


Уважаемый yk2ru! Решение этого уравнения рассмотрено В. Серпинским в "Пифагоровых треугольниках"!

 
 
 
 Re: Обобщения уравнения Пифагора
Сообщение28.09.2013, 14:24 
Серпинский "О решении уравнений в целых числах":
Легко доказать, что ... уравнение
$x^2 + y^2 - z^2 = k$
имеет бесконечно много решений ...
это вытекает непосредственно из тождества
$2t - 1 = (2u)^2 + (2u^2 - t)^2 - (2u^2 - t + 1)^2$
$2t = (2u + 1)^2 + (2u^2 + 2u - t)^2 - (2u^2 + 2u - t - 1)^2$

 
 
 [ Сообщений: 8 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group