2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3
 
 Re: Предел и интеграл
Сообщение29.08.2012, 20:12 
Аватара пользователя
Сначала тоже хотел предложить "по частям" интегрировать. Ho наткнулся на необходимость существования $f'$ и...

 
 
 
 Re: Предел и интеграл
Сообщение29.08.2012, 20:15 

(Оффтоп)

Oleg Zubelevich в сообщении #612350 писал(а):
ну приближать надо гладкими функциями естессна,

Не нада, а можна. Но и не обязательно.

 
 
 
 Re: Предел и интеграл
Сообщение29.08.2012, 20:25 
еще, очевидно, периодичнось $g$ не нужна, можно взять такое условие:
существует константа $c$ такая, что $\int_0^x(g(s)-c)ds$ -- ограничена

 
 
 
 Re: Предел и интеграл
Сообщение29.08.2012, 20:30 
Аватара пользователя
Не нужна для чего?

 
 
 
 Re: Предел и интеграл
Сообщение29.08.2012, 20:34 
Dan B-Yallay в сообщении #612360 писал(а):
Не нужна для чего?

Не нужна для утверждения. Я не проверял за леностью, но, скорее всего, действительно так. Правда, в подобном обобщении формулировка раздувается до неприличия.

 
 
 
 Re: Предел и интеграл
Сообщение29.08.2012, 20:57 
Аватара пользователя
Вот тут 2 способа разобрано.

 
 
 
 Re: Предел и интеграл
Сообщение30.08.2012, 13:50 
таки напишу доказательство.


Предположим, что функция $g\in L^p_{loc}(\mathbb{R}_+),\quad p\in(1,\infty],\quad f\in L^{p'}[0,1]$.
Предположим, что существует константа $c$ такая, что функция $\int_0^x(g(s)-c)ds$ -- ограничена на $\mathbb{R}_+$, и $$\frac{\|g\|_{L^p[0,n]}}{n}<\infty,\quad n\in\mathbb{N}$$.

Теорема. При $n\to\infty$ имеем
$$\int_0^1f(x)g(nx)dx\to c\int_0^1 f(x)dx.$$

Доказательство. Рассмотрим последовательность линейных функций $$\psi_n:L^{p'}[0,1]\to\mathbb{R},\quad \psi_n(f)=\int_0^1f(x)g(nx)dx.$$
Уже доказано (post612347.html#p612347) что данная последовательность сходится к чему надо на пространстве $C^1[0,1]$, которое плотно в $L^{p'}[0,1]$. По теореме Банаха-Штейнгауза она сходится на $L^{p'}[0,1]$.

 
 
 [ Сообщений: 37 ]  На страницу Пред.  1, 2, 3


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group