2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3, 4  След.
 
 Re: тензорное произведение
Сообщение07.08.2012, 09:01 
Заслуженный участник


13/12/05
4645
Oleg Zubelevich
Это Вы к своему определению тензорного произведения комментарий дали? Типа свойство универсальности выполняется?

 Профиль  
                  
 
 Re: тензорное произведение
Сообщение07.08.2012, 09:11 


10/02/11
6786
ну к моему , например. Реализация тензорного произведения всеравно нужна какая-то. Стандартную реализацию я на днях выписал здесь post602024.html#p602024

 Профиль  
                  
 
 Re: тензорное произведение
Сообщение07.08.2012, 09:42 
Заслуженный участник


13/12/05
4645
Oleg Zubelevich в сообщении #603688 писал(а):
ну к моему , например.

Не понимаю :-( . Вот у Вас есть кандидат на должность тензорного произведения, обозначим его $Z$ -- подпространство пространства билинейных отображений $X^*\times Y^*\to \mathbb R$. И есть билинейное отображение $\varphi\colon X\times Y\to Z$, $\big(\varphi(x,y)\big)(u,v)=u(x)v(y)$, $u\in X^*, v\in Y^*$. Как доказать его универсальность?
Путь $\psi\colon X\times Y\to W$ -- билинейное. Вы полагаете $f\left(\sum_i \varphi(x_i, y_i)\right)=\sum_i \psi(x_i,y_i)$. Почему оно корректно определено? Линейность и коммутативное свойство $f\circ\varphi=\psi$ понятны. Единственность тоже понятна.

 Профиль  
                  
 
 Re: тензорное произведение
Сообщение07.08.2012, 10:28 


10/02/11
6786
Padawan в сообщении #603693 писал(а):
Почему оно корректно определено?

Вы спрашиваете, почему из того, что $u(x)v(y)=u(x')v(y')$ при всех $ u\in X^*,v\in Y^*$ сдедует, что $\psi(x,y)=\psi(x',y')$?
Базисы Гамеля в $X,Y$ надо использовать при построении $u,v$.

 Профиль  
                  
 
 Re: тензорное произведение
Сообщение07.08.2012, 11:02 
Заслуженный участник


13/12/05
4645
Oleg Zubelevich в сообщении #603701 писал(а):
Вы спрашиваете, почему из того, что $u(x)v(y)=u(x')v(y')$ при всех $ u\in X^*,v\in Y^*$ сдедует, что $\psi(x,y)=\psi(x',y')$?

Нет. Я спрашиваю, почему из $\sum_i u(x_i) v(y_i)=\sum_j u(x'_j)v(y'_j)$ при всех $ u\in X^*,v\in Y^*$, следует, что $\sum_i\psi(x_i,y_i)=\sum_j\psi(x'_j, y'_j)$.

Предложу свой вариант доказательства того, что Ваше определение тензорного произведения правильное.

Пусть $\varphi\colon X\times Y\to X\otimes Y$ -- какое-то тензорное произведение, и соответствующее ему билинейное отображение, $\varphi(x,y)=x\otimes y$.

Рассмотрим билинейное отображение $\varphi_1\colon X\times Y\to Z$, $\big(\varphi_1(x,y)\big)(u,v)=u(x)v(y)$, $u\in X^*, v\in Y^*$. По свойству тензорного произведения существует единственное линейное отображение $f\colon X\otimes Y\to Z$, удовлетворяющее равенству $f(x\otimes y)=\varphi_1(x,y)$. Покажем, что $f$ -- линейный изоморфизм между $X\otimes Y$ и $Z$. То, что это отображение на все $Z$ следует из того, что $Z$ по определению порождается элементами $f(x\otimes y)=\varphi_1(x,y)$. Покажем, что $f$ -- инъекция. Пусть $f(\sum_i x_i\otimes y_i)=0$. $\sum_i x_i\otimes y_i$ можно записать как $\sum_{pq} \alpha_{pq} \xi_p\otimes\eta_q$, где $\{\xi_p\}$ -- базис линейной оболочки векторов $x_i$, а $\{\eta_q\}$ -- базис линейной оболочки векторов $y_i$ (сумма по $i$ -- конечная). Итак, $f(\sum \alpha_{pq} \xi_p\otimes\eta_q)=0$ или $\sum_{pq} \alpha_{pq} \varphi_1(\xi_p,\eta_q)=0$ или $\sum_{pq} \alpha_{pq}u(\xi_p)v(\eta_q)=0$ для любых $u\in X^*, v\in Y^*$. Фиксируем индексы $p_0,q_0$. Выберем функционалы $u\in X^*, v\in Y^*$ так, чтобы $u(\xi_p)=\delta_{pp_0}$, $v(\eta_q)=\delta_{qq_0}$ (это возможно, т.к. вектора $\{\xi_p\}$ и $\{\eta_q\}$ линейно независимы). Из $\sum_{pq} \alpha_{pq}u(\xi_p)v(\eta_q)=0$ получится $\alpha_{p_0q_0}=0$. Значит, $\sum_i x_i\otimes y_i=0$. Значит, $f$ -- инъекция.
Итак, имеем коммутативную диаграмму

$$
\xymatrix{
     &   & X\otimes Y \ar@{-->}[dd]^-f \\
     X\times Y \ar[rru]^-{\varphi} \ar[rrd]_-{\varphi_1} &  & \\
      &           & Z
}
$$
в которой $f$ -- изоморфизм.
Значит $Z$ вместе с билинейным отображением $\varphi_1$ тоже является тензорным произведением.

 Профиль  
                  
 
 Re: тензорное произведение
Сообщение07.08.2012, 12:48 
Заслуженный участник


13/12/05
4645
Еще можно для доказательства использовать следующую лемму (сам сформулировал)
Лемма. Пусть $\varphi\colon X\times Y\to Z$ -- билинейное отображение. Обозначим $\varphi(x,y)=x\otimes y$. Если выполнены следующие условия
1) элементы $x\otimes y$ порождают $Z$
2) если $\{\xi_p\}$ -- конечная линейно независимая система в $X$, $\{\eta_q\}$ конечная линейно независимая система в $Y$, то $\{\xi_p\otimes \eta_q\}$ -- линейно независимая система в $Z$,
то $Z$ вместе с $\varphi$ есть тензорное произведение $X$ и $Y$.

-- Вт авг 07, 2012 15:51:44 --

Все-таки тензорное произведение -- сложное понятие.

 Профиль  
                  
 
 Re: тензорное произведение
Сообщение07.08.2012, 13:19 
Заморожен
Аватара пользователя


18/12/07
8774
Новосибирск
Oleg Zubelevich в сообщении #603673 писал(а):
Рассмотрим пространство $Z$ билинейных функционалов $f:X^*\times Y^*\to\mathbb{R}$.

А почему именно в $\mathbb{R}$? Вроде над произвольным полем всё определяется :?

 Профиль  
                  
 
 Re: тензорное произведение
Сообщение07.08.2012, 13:27 


10/02/11
6786
Padawan в сообщении #603705 писал(а):
Я спрашиваю, почему из $\sum_i u(x_i) v(y_i)=\sum_j u(x'_j)v(y'_j)$ при всех $ u\in X^*,v\in Y^*$, следует, что $\sum_i\psi(x_i,y_i)=\sum_j\psi(x'_j, y'_j)$

Это чисто конечномерный факт.
Пусть $U=span\{x_i,x'_i\},\quad V=span\{y_j,y'_j\}$

Тензорное произведение $U\otimes V$ можно определить двумя способами:
1) как пространство билинейных функций $f:U^*\times V^*\to \mathbb{R},$ и соответственно $(x\otimes y)(u,v)=u(x)v(y)$ где $ x\in U,y\in V$
2) как пространство сопряженное к пространству билинейных функций $g:U\times V\to \mathbb{R}$ и соответственно $(x\otimes y)g=g(x,y)$ где $ x\in U,y\in V$
Получившиеся тензорные произведения канонически изоморфны. (На данном этапе универсальность не обсуждается)

Поэтому вот это $\sum_i u(x_i) v(y_i)=\sum_j u(x'_j)v(y'_j)$ означает, что
$$\sum_i x_i\otimes y_i=\sum_j x'_j\otimes y'_j$ -- тензорные произведения в смысле определения 1)
В силу канонического изоморфизма получаем тоже самое в силу определения 2): $\sum_i(p\circ\psi)(x_i,y_i)=\sum_j(p\circ\psi)(x'_j, y'_j)$ для любого $\quad p\in W^*$ Откуда $\sum_i\psi(x_i,y_i)=\sum_j\psi(x'_j, y'_j)$

-- Вт авг 07, 2012 13:27:40 --

Профессор Снэйп в сообщении #603742 писал(а):
А почему именно в $\mathbb{R}$? Вроде над произвольным полем всё определяется :?

потому, что меня анализ над произвольным полем не интересует :D

 Профиль  
                  
 
 Re: тензорное произведение
Сообщение07.08.2012, 13:31 
Заморожен
Аватара пользователя


18/12/07
8774
Новосибирск
Oleg Zubelevich в сообщении #603748 писал(а):
потому, что меня анализ над произвольным полем не интересует

А разве тензорное произведение к анализу относится? Не к алгебре?

 Профиль  
                  
 
 Re: тензорное произведение
Сообщение07.08.2012, 13:47 
Заслуженный участник


13/12/05
4645
А вот такое упражнение: доказать, что тензорное произведение (определяемое через универсальное отображение) удовлетворяет свойству два из моей леммы:
Padawan в сообщении #603729 писал(а):
2) если $\{\xi_p\}$ -- конечная линейно независимая система в $X$, $\{\eta_q\}$ конечная линейно независимая система в $Y$, то $\{\xi_p\otimes \eta_q\}$ -- линейно независимая система в $Z$

 Профиль  
                  
 
 Re: тензорное произведение
Сообщение07.08.2012, 15:42 
Заслуженный участник
Аватара пользователя


30/01/06
72407
Читаю определение Padawan. Да, действительно красиво.

Padawan в сообщении #603667 писал(а):
И да, самое главное, тензорное произведение существует для любых двух пространств $X,Y$ ( явно конструируется).

Я так понимаю, только для таких, для которых имеет смысл понятие "линейности отображения".

Ещё, кроме тензорного произведения, говорили про прямую сумму и произведение в тех же терминах. Можно услышать?

Ленга ещё не читал.

 Профиль  
                  
 
 Re: тензорное произведение
Сообщение07.08.2012, 17:21 


10/02/11
6786
Padawan в сообщении #603762 писал(а):
А вот такое упражнение: доказать, что тензорное произведение (определяемое через универсальное отображение) удовлетворяет свойству два из моей леммы:
Padawan в сообщении #603729 писал(а):
2) если $\{\xi_p\}$ -- конечная линейно независимая система в $X$, $\{\eta_q\}$ конечная линейно независимая система в $Y$, то $\{\xi_p\otimes \eta_q\}$ -- линейно независимая система в $Z$


зачем именно универсальное? реализации за тем и существуют чтоб упрощать жизнь. Кстати конечность этих систем не нужна.

Пусть $\{\xi_p\}$ и $\{\eta_q\}$ -- подмножества базисов Гамеля в соответствующих пространствах. Тогда
рассмотрим линейную комиинацию
$$\Big(\sum\lambda_{pq}\xi_p\otimes\optimes \eta_q\Big)(u,v)=\sum\lambda_{pq}u(\xi_p)v( \eta_q)=0,\quad u\in X^*,\quad v\in Y^*.$$
(если элементов бесконечно много, то берем суммы по конечным подмножествам)
Выберем $u,v$ так, что $u(\xi_1)=v(\eta_1)=1$, а на всех остальных векторах базисов Гамеля $u,v$ -- нули. Получаем $\lambda_{11}=0$. И так далее.

 Профиль  
                  
 
 Re: тензорное произведение
Сообщение07.08.2012, 17:39 
Заморожен
Аватара пользователя


18/12/07
8774
Новосибирск
Munin в сообщении #603818 писал(а):
Ещё, кроме тензорного произведения, говорили про прямую сумму и произведение в тех же терминах. Можно услышать?

Это ещё проще.

$C$ называется прямой суммой $A$ и $B$, если существуют морфизмы $\varphi : A \to C$ и $\psi : B \to C$ такие, что для любой пары морфизмов $f : A \to D$, $g : B \to D$ существует единственный морфизм $h : C \to D$, для которого $f = h \circ \varphi$ и $g = h \circ \psi$.

$C$ называется прямым произведением $A$ и $B$, если существуют морфизмы $\varphi : C \to A$ и $\psi : C \to B$ такие, что для любой пары морфизмов $f : D \to A$, $g : D \to B$ существует единственный морфизм $h : D \to C$, для которого $\varphi$ = f \circ h и $\psi = g \circ h$.

Понятия прямой суммы и прямого произведения произвольного семейства объектов являются естественными обобщениями. Вместо пар морфизмов берём семейства морфизмов и всё Ок.

 Профиль  
                  
 
 Re: тензорное произведение
Сообщение07.08.2012, 17:44 
Заслуженный участник


13/12/05
4645
Oleg Zubelevich
Нет, через универсальное свойство хочу.
А лемму я наоборот использовал, чтобы доказать, что две указанные Вами конкретные реализации, действительно являются тензорным произведением.

 Профиль  
                  
 
 Re: тензорное произведение
Сообщение07.08.2012, 17:46 
Заморожен
Аватара пользователя


18/12/07
8774
Новосибирск
Padawan в сообщении #603667 писал(а):
Правда они там модули над кольцами рассматривают, а не векторные пространства, но это все равно.

И это правильно. Ибо векторное пространство над полем - частный случай модуля над кольцом!

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 60 ]  На страницу Пред.  1, 2, 3, 4  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group