Я еще раз повторяю: я не вижу абсолютно никаких проблем со своей формулировкой. Если вы видите - укажите конкретно на эти проблемы. Пожалуйста, будьте конструктивнее. Цитировать формулировку третий раз я не буду.
На Вику я сослался, потому что трудно давать гиперссылки на отдельные абзацы в PDF и DJVU документах. Общеизвестное определение производной, используемое мной, вы можете найти, как минимум, в учебниках Рудина, Спивака, Зорича и Львовского. (В Вике, кстати, определение дано вполне четкое. Не знаю, что вас в нем не устраивает - слог не шекспировский, что ли?) Ладно, так уж и быть, сформулирую его здесь специально для вас.
Пусть

,

- нормированные векторные пространства и

- функция из

в

, определенная в точке

и некоторой ее окрестности

. Функция

называется дифференцируемой в точке

, если существует такое линейное отображение

, что для всех

имеет место

. Такое отображение

называется производной (дифференциалом) функции

в точке

.
P.S. Если вы и дальше будете сыпать (ничем не подкрепленными) заявлениями о бессмысленности и бессвязности моих формулировок, я не вижу смысла продолжать эту дискуссию.