Уважаемые участники форума!
Приглашаю Вас обсудить мою работу "Волновая природа микромира", посвященную осмысливанию физической сущности и корректировке отдельных положений квантовой теории (КТ). Работа, размещенная в SciTechLibrary, включает
головную страничку с аннотацией и перечнем статей, а также ряд статей, посвященных рассмотрению общих и частных вопросов указанной проблемы. Сразу отмечу, что мой принцип - последовательное эволюционное развитие физической науки, в первую очередь устранение ее парадоксальных положений.
Ввиду большого объема материалов предлагается обсуждение указанных ниже вопросов, которые будут последовательно подниматься по ходу дебатов, если таковые получатся:
1. Парадоксальность и неудовлетворительность фундаментальных положений квантовой теории и их корректировка.
2. Случайные вакуумные поля, их показатели и роль в квантовых процессах.
3. Квантование электронно-позитронного поля. Объяснение отсутствия самодействия электрических зарядов электрона и позитрона (ЭП).
4. Модифицированные волновые уравнения микрочастиц, в частности электрона и позитрона, и операторы их динамических переменных.
5. Спин-момент и спин-вектор ЭП. Смысл волновых уравнений. Волновое уравнение фотона в координатном представлении.
6. Интегральный квазиклассический метод решения задач квантовой электродинамики.
7. Квантовая нелокальность и эксперименты со связанными фотонами.
8. Волновая природа мира и теория относительности.
В основе рассматриваемого подхода лежат положения о
физической реальности волновой функции элементарных микрочастиц и о важной роли случайных вакуумных полей. Указанные положения при модификации уравнений и операторов ЭП объясняют сущность ряда квантовых явлений, и позволяют решать квантомеханические задачи квазиклассическим методом без использования аппарата вторичного квантования. Рассмотрение всех проблем ведется на примере электромагнитного (ЭМП) и электронно-позитронного (ЭПП) полей и соответствующих им микрочастиц, однако излагаемые положения имеют более общий характер.
Сначала я хотел бы сделать вступительные сообщения, касающиеся вопроса 1.,
1а. Парадоксальность фундаментальных положений квантовой теории (КТ)
Казалось бы, базовые положения современной квантовой теории и наиболее проработанной ее ветви - квантовой электродинамики (КЭД), не должны вызывать какой-либо неудовлетворенности. Проводимые в КЭД правилам расчеты количественных показателей электродинамических процессов дают блестящее совпадение с экспериментом. Однако детальное знакомство с указанными фундаментальными положениями вызывает чувство разочарования. Прежде всего, КТ не убедительна в части осмысливания физической сущности явлений, математическое же описание процессов в КТ излишне формализовано и не всегда корректно.
Какие же базовые положения представляются малоубедительными? Это, прежде всего, положение о дуализме микрообъектов - "волна-корпускула". Казалось бы, что здесь неприемлемого? Микрочастица представляет собой локализованное физическое волновое поле, которое в силу малости занимаемого объема может быть условно представлено в виде маленькой квазиточечной частицы - корпускулы. Но это не так. Считается, что волновая функция частицы, сама по себе не имеет физического смысла. Физический же смысл имеют произведенные от волновой функции квадратичные формы, которые определяют вероятности обнаружения частицы-корпускулы в том или ином состоянии, или вероятность ее положения в разных точках пространства.
Вероятностная волновая функция микрочастицы проявляет свойства дифракции и интерференции как обычная физическая волна. Однако трудно представить себе чисто абстрактную вероятностную волну, которая, не имея физического аналога, обладает указанными свойствами. В математической теории вероятностей таких волн нет.
Да и частицы-корпускулы обладают странными свойствами. Так обычно невозможно одновременно указать точные значения ряда их параметров, например координаты и соответствующей составляющей скорости.
Обычно о размерах частицы-корпускулы ЭП речь не ведется, но иногда они ассоциируются с объектами весьма малого размера, менее
см или даже считаются точечными объектами. Однако в указанных случаях размер электрона оказывается недостаточным для объяснения относительно большого значения его внутреннего (спинового) момента, поскольку при этом линейная скорость вращательного движения массовой субстанции частицы должна превышать скорость света.
Оставляют недоумение широко используемые в КЭД так называемые поля излученного и поглощенного фотонов, описываемые бесконечной плоской периодической волной, а также положение об излучении взаимодействующей заряженной частицей, например электроном, фотона, который через некоторое время поглощается той же частицей.
Остается без объяснения отсутствие самодействия электрических зарядов частицы, которое представляется весьма значительным, но никак не учитывается в расчетах при решении волновых уравнений.
Наконец, представляется странным сохранение постоянных значений проекций векторных и тензорных показателей, например, проекций спина электрона при произвольном изменении системы координат.
Не вызывает также удовлетворения сложный и весьма формализованный математический аппарат квантовой теории. Так квантование полей частиц введено формально, в форме определенных правил коммутации чисто формальных операторов рождения и уничтожения частиц. Какие либо физические особенности процесса квантования при этом не упоминаются.
Поскольку предложенные интегральные методы расчетов вероятностей результатов физических процессов столкнулись с появлением расходящихся выражений, были введены искусственные правила обхода этих расходимостей, не вызывающие удовлетворения даже у их творцов.
Представляется, дело в том, что квантовые явления изначально были интерпретированы, как специфическая механика микрочастиц, чему способствовали первые наблюдательные эксперименты. Современное состояние теории заставляет иначе взглянуть на сущность микрочастиц. По мнению автора, они представляют определенные физические поля, зачастую устойчивые и склонные к локализации в малом объеме. Поэтому автор при комплексном подходе к проблеме, избегая термина квантовая механика, предпочитает использование термина квантовая теория (КТ).
Ничего не имея против использования найденных полуэмпирических математических приемов для выполнения расчетных процедур, автор считает, что для дальнейшего развития КТ следует понять физическую сущность квантовых процессов. Предлагаемые автором новые положения не противоречат известным экспериментальным данным. При этом остается в силе абсолютное большинство известных вычислительных формул при новой трактовке их отдельных членов.
Что же касается специальной теории относительности (СТО), то здесь также возникает ряд недоуменных вопросов. Почему столь большую роль играет скорость света при переходе в новую систему отсчета? Насколько точна и универсальна СТО? Нуждается ли СТО в признании существования эфира?
1б. Разъяснение и корректировка ряда базовых положений квантовой теории
Квантовые явления практически без изменения конечных результатов и расчетных соотношений можно переосмыслить следующим, излагаемым ниже, более логичным образом. Переосмысливание в первую очередь затрагивает сущность волновых функций микрообъектов и проблему дуализма волна-частица. По-новому осмысливаются так называемые нулевые вакуумные состояния полей частиц, а также сущность процесса квантования и детектирования микрочастиц и другие квантовые явления.
Предполагается, что все микрочастицы, в частности электроны, представляют собой регулярные релаксирующие (осциллирующие) в той или иной мере локализованные вакуумные поля, квантованные в стационарных состояниях. Все вакуумные поля имеют общую природу, о чем свидетельствуют взаимопревращения различных микрочастиц и единая, как будет показано далее, скорость распространения их волновых возмущений, равная скорости света.
Микрочастицы-корпускулы, например фотоны и электроны, представляют наблюдаемый результат взаимодействия соответствующих полей с детектирующей средой. В случае "тяжелых" частиц - нуклонов или ядер атомов, в качестве микрочастицы-корпускулы обычно выступает ее сильно локализованный (d~
см) волновой пакет. Однако, эксперименты по упругому рассеянию встречных пучков нуклонов с ультрарелятивистскими скоростями показывают, что, судя по сечению упругого рассеяния, нуклоны-корпускулы могут иметь значение поперечника значительно меньшее указанной цифры.
Поля микрочастиц описываются волновыми функциями квантовой механики (
-функции), каждая из которых удовлетворяют некоторому дифференциальному уравнению. Квадратичные формы
-функции определяют физические и вероятностные показатели соответствующего микрообъекта. В случае элементарных частиц волновые функции достаточно адекватно отражают характеристики соответствующего физического поля частицы, в то время как в случае сложных частиц или ансамбля микрочастиц, волновые функции являются чисто формальным образованием, построенным на основе физических волновых функций элементарных частиц. Не отражая локальных динамических показателей вакуумных полей, они, тем не менее представляют удобный расчетный инструмент для определения вероятностей различных состояний системы и вероятностей ее перехода в новые состояния под действием внешних факторов.
Волновые функции элементарных частиц в зависимости от точности описания и типа частицы могут представляться различными геометрическими объектами. В простейшем случае это скалярное действительного или комплексное поле. В случае квантов ЭМП - фотонов волновая функция является вектором в 4-пространстве СТО, в случае электронов и многих других частиц при наиболее точном их описании волновые функции представляются спинорами различной структуры. В случае системы частиц их волновая функция обычно представляется скалярными комплексными числами.
Поля частиц с нулевой массой покоя характеризуются свободным распространением волн в вакууме со скоростью света, в то время как поля частиц с конечной массой покоя, распространяясь со световой скоростью, характеризуются интенсивным саморассеянием и могут образовывать неподвижные или движущиеся с досветовой скоростью волновые пакеты. При этом каждая компонента волновой функции свободной частицы с нулевой массой покоя подчиняется классическому волновому уравнению, а с отличной от нуля массой покоя - волновому уравнению типа Клейна-Гордона-Фока.
Относительно большие размеры волновых пакетов наблюдаемых частиц (порядка
см для атомных электронов) позволяют объяснить их спиновый и магнитный моменты внутренней циркуляцией энергии и электрического тока, в то время как в случае точечных или весьма малых размерах гипотетических частиц-корпускул отсутствует разумное объяснения значений этих параметров.
Наряду с регулярными полями вакуум характеризуется наличием ряда случайных вакуумных полей (СВП), прежде всего, электромагнитного и электронно-позитронного. Случайные вакуумные поля, прежде всего ЭМП и поля заряженных частиц, хаотически взаимодействуют друг с другом, следствием чего является статистическая однородность распределения ряда их показателей. А именно, каждая независимая составляющая СВП характеризуется средним действием, равным постоянной Планка
. Говоря иначе, спектральная плотность действия для каждой компоненты рассматриваемых полей постоянна и равна
.
В случае заряженных случайных вакуумных полей, например ЭПП, каждая их составляющая характеризуется также одинаковым средним электрическим зарядом, равным элементарному заряду микрочастиц + или -e.
Случайные вакуумные поля играют весьма важную роль в квантовых процессах. Именно они обеспечивают квантование полей микрочастиц, компенсацию самодействия их электрических зарядов и неоднозначный вероятностный характер результатов измерения их показателей.
Как уже упоминалось, представление частиц в виде точеных объектов-корпускул является условностью и объясняется либо малостью локализованных квантованных волновых пакетов, либо специфическим влиянием случайных вакуумных полей, а также недостаточно корректным истолкованием экспериментальных результатов электродинамических процессов. Остановимся на последнем аспекте проблемы.
При рассмотрении электродинамических явлений создается видимость взаимодействия частиц электронов с "частицами" электромагнитного поля - фотонами. Однако все можно объяснить иначе, исходя из волновой природы электрона. А именно, из волнового уравнения электрона, взаимодействующего с плоской моночастотной электромагнитной волной, следует характерное соотношение для компонент волновых векторов электронного (исходного - 1 и конечного - 2) и электромагнитного полей:
, которое с точностью до постоянного множителя с
отвечает закону сохранения энергии-импульса рассматриваемой "системы частиц". Не трудно понять, что импульсно-энергетические показатели конечных квантованных волновых электронных пакетов - квазичастиц определяются только частотой ЭМП, а его амплитуда определяет лишь скорость образования электронного поля и электронов в новом состоянии. При этом создается видимость корпускулярной природы ЭМП, хотя последнее в данном случае может быть вообще не квантованным.
Уточняя ситуацию, отметим, что излучаемое отдельными атомами в электродинамических процессах ЭМП оказывается квантованным, его действие равно
, а полная энергия излученной моночастотной волны равна
. Учет квантования волнового ЭМП оказывается принципиально необходимым при рассмотрении некоторых физических процессов, в частности, термодинамического электромагнитного излучения.
Важным случаем являются стационарные состояния регулярных вакуумных полей
exp
, которые характеризуются постоянной частотой релаксации (осцилляции) и неизменным пространственным распределением динамических показателей. Стационарные состояния всегда квантованы. Квантование стационарного заряженного поля, например электронного, объясняется влиянием вакуумных полей. Ввиду непрерывного взаимообмена зарядами с вакуумным электронным полем электрический заряд и квантовое действие стационарного электронного локализованного поля выравнивается со среднестатистическими значениями названных показателей вакуумных состояний -
е и
.
Примером частиц в стационарном состоянии являются атомные электроны, представляющие осциллирующие квантованные заряженные вакуумные поля, сдерживаемые электрическим полем ядра. Постоянством распределенных зарядов и токов атомных электронных полей объясняется отсутствие электромагнитного излучения, и, как следствие, устойчивость атома, - ситуация, не объяснимая при использовании корпускулярной квазиточечной модели атомных электронов
Вследствие вакуумной автобалансировки заряда стационарные состояния могут возникать самопроизвольно и являются устойчивыми образованиями. Такие квантованные состояния вакуумных полей наблюдаются в виде элементарных частиц. При наличии множества поличастотных составляющих электронного поля, последние взаимодействуют друг с другом, излучая и поглощая электромагнитные волны. При этом имеет место взаимная конкуренция различных составляющих, в результате которой процесс заканчивается переходом электронного заряда в одно или несколько квантованных стационарных состояний.
Важным эффектом, обязанным наличию вакуумных полей, является тесно связанный с эффектом квантования заряда эффект компенсации самодействия зарядов частицы. Данный эффект объясняется рассеянием исходного заряда поля частицы под действием ее собственного электрического поля при одновременной концентрации в области локализации частицы зарядов набегающих электронных случайных вакуумных полей, притормаживаемых тем же электрическим полем. Таким образом, частица представляет собой стационарную динамическую систему, характеризующуюся непрерывным обменом зарядами с вакуумным полем.
При взаимодействии микрочастиц c внешними электромагнитными полями или друг с другом вакуумные ЭМП могут быть причиной перехода системы взаимодействующих частиц в новые состояния, переход в которые был бы невозможен при отсутствии указанных полей. Например, внешнее волновое ЭМП может вызывать лишь колебания электронов, но это же поле в совокупности с вакуумным ЭМП может вызывать появление рассеянных электронов, движущихся в различных направлениях (комптоновское рассеяние).
Влиянием СВП объясняется проявление корпускулярных свойств электронов и фотонов, когда эксперименты, как считается, свидетельствуют о весьма малых, вплоть до точечных, размерах частиц, (например, при упругом рассеивании весьма быстрых встречных электронных или протонных пучков).
Электромагнитные составляющие СВП широко фигурируют в расчетных формулах КЭД под названием "поле излученного (поглощенного) фотона", и "поле виртуального фотона". Электронно-позитронные СВП фигурируют в формулах КЭД в собственно-энергетических электронных диаграммах в виде рождающихся и аннигилирующих виртуальных электронно-позитронных пар (электронно-позитронные петли).
При изменении внешних условий, например при детектировании частицы или измерении некоторого ее показателя, волновая функция частицы может изменяться (редуцировать), переходя в одно из более низких энергетических состояний. При этом процесс ее перехода в то или иное новое состояние виду влияния СВП неоднозначен и имеет вероятностный характер. Именно этот немаловажный фактор и явился причиной утверждения борновской чисто вероятностной трактовки волновой функции. Касаясь другого вопроса вероятностной трактовки явлений КТ, отметим здесь, что известные соотношения неопределенности Гейзенберга, описывают, в частности, погрешности, являющиеся результатом представления волнового пакета поля частицы в виде точечного микрообъекта - корпускулы.
Хотя большинство конечных результатов в новой трактовке не изменяются, определенные изменения существующих результатов все же имеют место.
Прежде всего, это - использование отдельных формул для электронного и позитронного полей. Далее, получение новых формул для операторов спинового и орбитального моментов свободного электрона и позитрона, которые обеспечивают сохранение указанных показателей по отдельности.
Далее указывается, что спин кванта ЭМ поля - фотона (по крайней мере в случае радио- и оптического диапазонов) может принимать произвольные значения в диапазоне от -1 до +1 в единицах
.
Еще можно отметить новый взгляд на одну особенность электрически заряженных частиц - бозонов (целый спин) и фермионов (полуцелый спин). А именно, утверждается, что в каждом квантовом состоянии, характеризуемом конкретной волновой функцией в определенных координатах, в любом случае (бозоны или фермионы) может находиться лишь одна заряженная частица.
Наконец, новым моментом является введение с некоторыми оговорками волновой функции фотона в обычном координатном представлении.
Более детальное рассмотрение затронутых вопросов возможно в ходе предлагаемого диспута. Для предварительного более детального знакомства следует обратиться к базовой авторской статье
"Волновая природа микромира и роль случайных вакуумных полей в квантовых процессах (основные положения)".
С уважением О.Львов