2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Excircles and areas
Сообщение29.05.2012, 23:44 
Аватара пользователя


13/10/07
755
Роман/София, България
Let $I_1, I_2, I_3$ are the tangent points of the incircle of $ABC$ with the sides and $J_1, J_2, J_3$ are its excenters. Prove that ${S_{ABC}}^2=S_{I_1I_2I_3}S_{J_1J_2J_3}$

 Профиль  
                  
 
 Re: Excircles and areas
Сообщение30.05.2012, 13:13 
Заслуженный участник


03/12/07
372
Україна
$S_{I_1I_2I_3}=\frac {2abc}{(a+b)(b+c)(c+a)}S$, $S_{J_1J_2J_3}=(a+b+c)R$.
Что в этих задачах олимпиадного? И зачем на каждую такую задачу отдельная тема?

 Профиль  
                  
 
 Re: Excircles and areas
Сообщение30.05.2012, 13:19 
Аватара пользователя


13/10/07
755
Роман/София, България
Are you sure about the equality for $S_{I_1I_2I_3}$ ? $\frac{S_{I_1I_2I_3}}{S_{ABC}}=\frac{r}{2R}$. About the problems - olympiads have different levels. They may be good for the earlier rounds. I didn't post them in separate topics because they are in some ways different and I don't like posting many problems in a single topic. It is a matter of taste.

 Профиль  
                  
 
 Re: Excircles and areas
Сообщение30.05.2012, 13:42 
Заслуженный участник


03/12/07
372
Україна
ins- в сообщении #578367 писал(а):
Are you sure about the equality for $S_{I_1I_2I_3}$ ? $\frac{S_{I_1I_2I_3}}{S_{ABC}}=\frac{r}{2R}$

Да, я перепутал - записал формулу для площади треугольника с вершинами в основаниях биссектрис треугольника.

 Профиль  
                  
 
 Re: Excircles and areas
Сообщение30.05.2012, 13:55 
Аватара пользователя


13/10/07
755
Роман/София, България
I know that. I posted a problem here to prove an inequality about the area of these two triangles. I have few "open problems" but they seems to be very hard and they are still not solved. If you want you can try them. It is a sample problem topic57024.html. I have no enough experience to solve them. But I like math and when I see something beautiful.

You can see a solution here:

(Оффтоп)

http://www.artofproblemsolving.com/Forum/viewtopic.php?f=48&t=481695

A friend of mine solved the problem. What I like about this problem is it is not very hard but it requires lots of knowledge about the triangle geometry. And the fact is not "super beautiful" but it is "beautiful enough". It is my personal opinion.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 5 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group