2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Circumcircle and excircles
Сообщение29.05.2012, 23:17 
Аватара пользователя


13/10/07
755
Роман/София, България
Triangle $ABC$ is inscribed in circle $k$. $k_1, k_2, k_3$ are its excircles tangent to the sides $AB$, $BC$, $CA$ respectively. $k$ and $k_1$ intersects at the points $X_1$ and $X_2$. $k$ and $k_2$ intersects at the points $Y_1$ and $Y_2$. $k$ and $k_3$ intersects at the points $Z_1$ and $Z_2$. $A_1$ is the intersection point of $Z_1Z_2$ and $X_1X_2$. $B_1$ is the intersection point of $X_1X_2$ and $Y_1Y_2$. $C_1$ is the intersection point of $Y_1Y_2$ and $Z_1Z_2$. Prove that $AA_1$, $BB_1$, $CC_1$ intersects at a common point.

 Профиль  
                  
 
 Re: Circumcircle and excircles
Сообщение30.05.2012, 11:45 
Аватара пользователя


13/10/07
755
Роман/София, България
If you are interested you can see a solution. I don't like that problem very much but for the sake of completeness I posted it.

(Оффтоп)

http://www.artofproblemsolving.com/Forum/viewtopic.php?f=48&t=481693

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 2 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group