Упростил донельзя - теперь подинтегральные выражения вообще не зависят от t, но все равно не выходит :/
Код:
k1 = 6000,
k2 = 60000,
Ix = 0.2,
Iz = 0.05,
Ixz = 0.007,
Xc = 0.025,
Zc = 0.1,
ro = 0.7,
l = 0.3,
k = 0.33,
With[{a11 = k1, a22 = k2, c11 = Ix, c22 = Iz, c12 = -Ixz, c21 = -Ixz,
ro = 0.7,
V := 16.5*t + 396,
M := 1.2 + 0.05*t,
K1 := 2*ro/(Sqrt [(1.2 + 0.05*t)^2 - 1]),
d011 := (0.25 - 0.5*z)*z^2,
d012 := ((0.15 - 0.5*z)/(0.25 - 0.5*z) + ((0.33*z)/2 - z/2 -
0.33/4 + 3/20)/(0.25 - 0.5*z))*(0.25 - 0.5*z)^2*z,
d022 := (((0.15 - 0.5*z)/(0.25 - 0.5*z) + ((0.33*z)/2 - z/2 -
0.33/4 + 3/20)/(0.25 - 0.5*z))^2 + 1/12)*(0.25 - 0.5*z)^3,
b022 := ((0.15 - 0.5*z)/(0.25 - 0.5*z) + ((0.33*z)/2 - z/2 -
0.33/4 + 3/20)/(0.25 - 0.5*z))*(0.25 - 0.5*z)^2,
b012 := (0.25 - 0.5*z)*z,
d11 = NIntegrate[d011, {z, 0, l}],
d12 = NIntegrate[d012, {z, 0, l}],
d21 = NIntegrate[d012, {z, 0, l}],
d22 = NIntegrate[d022, {z, 0, l}],
b12 = NIntegrate[b012, {z, 0, l}],
b22 = NIntegrate[b022, {z, 0, l}]
}, sol =
NDSolve[{c11*q''[t] + K1*d11*V*q'[t] + a11*q[t] + c12*r''[t] +
K1*d12*V*r'[t] - K1*b12*V^2*r[t] == 10 Sin [t],
c21*q''[t] + K1*d21*V*q'[t] + a22*r[t] + c22*r''[t] +
K1*d22*V*r'[t] - K1*b22*V^2*r[t] == 10 Sin [t],
q[1] == 1, q'[1] == 2, r[1] == 3, r'[1] == 4}, {q, r}, {t, 1,
100}, SolveDelayed -> True]]
Plot[Evaluate[{q[t], r[t]}], {t, 1, 100}]
Код:
NDSolve::nlnum: The function value {0.,24000. +492804. b11+628325. b012 K1+631.8 d011 K1-1053. d012 K1-10. sin,0.,-1.02*10^6+492804. b21+2106. d12+628325. b022 K1-1053. d022 K1-10. sin}
is not a list of numbers with dimensions {4} at {t,q[t],(q^\[Prime])[t],r[t],(r^\[Prime])[t],(q^\[Prime])[t],(q^\[Prime]\[Prime])[t],(r^\[Prime])[t],(r^\[Prime]\[Prime])[t]} = {1.,4.,6.,-17.,-10.,6.,0.,-10.,0.}. >>
ЧЯДНТ?