Скажите пожалуйста в чем заключается содержательный смысл формул преобразования Фурье?
Например как я могу выплонить ДПФ с помощь спичек?
Цитата:
Фурье применил свой математический метод для объяснения механизма теплопроводности. Удобным примером, в котором не возникает вычислительных трудностей, является распространение тепла по якорному кольцу (железному кольцу, к которому крепится якорь), погружаемому на некоторое время наполовину в огонь. Когда погружённая в огонь часть кольца раскаляется докрасна, его вынимают из огня. Чтобы тепло не успело уйти в воздух, кольцо сразу закапывают в мелкий песок, а затем измеряют температуру на той его части, которая непосредственно огнём не нагревалась.
Вначале распределение температуры нерегулярно: часть кольца равномерно холодная, другая часть равномерно горячая, а между этими зонами наблюдается резкий градиент температуры. Однако, по мере того как тепло распространяется от горячей зоны к холодной, распределение температуры становится всё более равномерным. Вскоре распределение приобретает форму синусоиды: график изменения температуры плавно нарастает и убывает в виде буквы S, точно по такому же закону, по которому изменяется функция синуса или косинуса. Синусоида постепенно выравнивается и в конце концов температура по всему кольцу становится одинаковой.
Фурье предположил, что первоначальное нерегулярное распределение можно разложить на множество простых синусоид, каждая из которых имеет свой максимум температуры и свою фазу, т.е. начальное положение на кольце. При этом каждая синусоидальная компонента должна изменяться от максимума к минимуму и обратно целое число раз на одном полном обороте по кольцу. Составляющая, которая имеет ровно один период на кольце, была названа главной гармоникой, а составляющие с двумя, тремя и более периодами — соответственно второй, третьей и т.д. гармоникой. Математическая функция, описывающая максимум температуры и позицию, или фазу, каждой из гармоник, называется преобразованием Фурье от функции распределения температуры. Фурье свёл единую функцию распределения, трудно поддающуюся математическому описанию, к более удобным в обращении рядам периодических функций синуса и косинуса, которые в сумме дают исходное распределение.
Применяя этот анализ к процессу распространения тепла по кольцу, Фурье рассудил, что чем больше число периодов у синусоидальной компоненты, тем быстрее она должна затухать. Эту мысль можно проиллюстрировать, проследив за отношениями, наблюдающимися между главной и второй гармониками температурного распределения. Во второй гармонике температура дважды меняется от максимума к минимуму на одном проходе вдоль кольца, в то время как в главной гармонике это изменение наблюдается лишь один раз. Следовательно, расстояние, которое нужно преодолеть теплу от максимума температуры к минимуму, во второй гармонике вдвое меньше, чем в первой, главной. Более того, температурный градиент во второй гармонике также вдвое круче, чем в первой. Таким образом, поскольку вдвое более интенсивный поток тепла проходит вдвое меньшее расстояние, вторая гармоника должна затухать вчетверо быстрее, по сравнению с первой, как функция времени.
Гармоники более высокого порядка будут затухать ещё быстрее. Поэтому лишь одно синусоидальное распределение, соответствующее главной составляющей, останется при приближении температуры кольца к равновесию. Фурье считал, что с помощью этого метода можно рассчитать, как любое начальное распределение температуры изменяется во времени.
Исходя из каких предпосылок Фурье предположил что можно разложить на множество простых синусоид (содержательно)?
Какую роль в формулах играет предположение "чем больше число периодов у синусоидальной компоненты, тем быстрее она должна затухать" и "Поэтому лишь одно синусоидальное распределение, соответствующее главной составляющей, останется при приближении температуры кольца к равновесию."(содержательно)?
Как догадался о выводе формул вычисления коэффициентов ряда Фурье (содержательно)?