Подскажите как работать в FlexPDE, хочу нарисовать область вот такую:
, хелп изучил, но не помогло, есть ли русский мануал? Потому что хочется нарисовать, но не получается. Подскажите, а что нужно указать,чтобы на монитор выводились только линии которые изображаю, а то там куча картинок
вот скрипт с которым работаю:
(Оффтоп)
Код:
select
errlim = 0.5e-4 {error tolerance for stress determinations}
variables
U {displacements U and V are the variables}
V
definitions
a=5 {length of a plate part}
b=2 {width of a plate part}
R=0.25 {radius of a hole}
p=1e3 {value of the stretching loading (kG/sm^2)}
nu = 0.3 {Poisson's ratio}
E = 2e6 {Young's modulus (kG/sm^2)}
mu = E/2/(1+nu) {shear modulus}
lambda = 2*mu*nu/(1-2*nu) {Lame's coefficient}
{lambdaz is the Lame's coefficient for plane stress condition}
lambdaz = 2*mu*lambda/(lambda+2*mu)
Sxx = dx(U) {axial strain Sxx}
Syy = dy(V) {axial strain Syy}
Sxy = (dy(U)+dx(V))/2 {shear strain Sxy}
Txx= lambdaz*(Sxx+Syy)+2*mu*Sxx {stress Txx}
Tyy= lambdaz*(Sxx+Syy)+2*mu*Syy {stress Tyy}
Txy=2*mu*Sxy {stress Txy}
mcoeff=0.5 {scale factor for grid-plot output}
Scal=mcoeff*globalmax(magnitude(x,y))/globalmax(magnitude(u,v))
RR=sqrt(x*x+y*y) theta=arcsin(y/RR) {RR, theta are the polar coordinates}
{components of the stress tensor in polar coordinate system}
Trr=Txx*(cos(theta))**2+Tyy*(sin(theta))**2+Txy*sin(2*theta)
Tthetatheta=Txx*(sin(theta))**2+Tyy*(cos(theta))**2-Txy*sin(2*theta)
equations {differential equilibrium equations for a plane elastic problem}
U: dx(Txx) +dy(Txy) = 0
V: dx(Txy)+dy(Tyy) = 0
boundaries {region and boundary conditions}
region 1
{start (R,0)}
{load(U)=0 {symmetry conditions along the axis Y=0}
value(V)=0
line to (a,0)}
{START(0,0) LINE TO (10,0) TO (10,10) TO (0,10) TO CLOSE}
START(SQRT(13),0) ARC(CENTER=0,0) ANGLE=60
START(2,3) LINE TO (-2,3)CLOSE
START(3,6) LINE TO (-3,6)CLOSE
region 2
START(SQRT(45),0) ARC(CENTER=0,0) ANGLE=60
{START(0,5)LINE TO(12,-10)TO (18,-5)TO (4,5)TO CLOSE}
load(U)=p {pressure}
load(V) = 0
line to (0,0)
load(U)=0 {free boundary, no stress}
load(V)=0
line to (0,0)
{value(U)=0 {symmetry conditions along the axis X=0}
load(V) = 0
line to (0,R)}
{load(U)=0 {free boundary, no stress}
load(V)=0
arc(center=0,0)} to close
monitors
grid(x+Scal*U,y+Scal*V) {show deformed grid of solution in progress}
plots {resulting plots}
grid(x+Scal*U,y+Scal*V)
contour(U) painted as "Displacement Ux"
contour(U) as "Displacement Ux"
contour(V) painted as "Displacement Ux"
contour(V) as "Displacement Ux"
contour(Sxx) painted as "Displacement Ux"
contour(Sxx) as "Displacement Ux"
contour(Sxy) painted as "Displacement Ux"
contour(Sxy) as "Displacement Ux"
contour(Syy) painted as "Displacement Ux"
contour(Syy) as "Displacement Ux"
contour(Txx) painted as "Displacement Ux"
contour(Txx) as "Displacement Ux"
contour(Txy) painted as "Displacement Ux"
contour(Txy) as "Displacement Ux"
contour(Tyy) painted as "Displacement Ux"
contour(Tyy) as "Displacement Ux"
contour(u) painted as "Displacement Ux"
contour(v) as "Displacement Ux"
vector(u,v)
contour(Tthetatheta) painted as "Stress T_thetatheta"
contour(Tthetatheta) as "Stress T_thetatheta"
elevation(Tthetatheta) from (0,R) to (0,b) as "T_thetatheta along line x=0"
elevation(u) from (a,b) to (R/29,0)
elevation(v) from (a,b) to (R/3,0)
end