2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Задача-красавица с международки
Сообщение10.01.2012, 11:07 
Аватара пользователя


01/12/11

8634
Доказать, что для любых натуральных $ n $ и $ m $ найдутся $ n $ последовательных натуральных чисел, каждое из которых имеет не менее $ m $ попарно различных простых делителей.

 Профиль  
                  
 
 Re: Задача-красавица с международки
Сообщение10.01.2012, 12:04 
Заслуженный участник


02/08/10
629
Разве это не следует из Китайской теоремы об остатках?

 Профиль  
                  
 
 Re: Задача-красавица с международки
Сообщение10.01.2012, 13:27 
Заслуженный участник
Аватара пользователя


23/07/08
10910
Crna Gora
Конечно, следует! Расписывать надо?

 Профиль  
                  
 
 Re: Задача-красавица с международки
Сообщение10.01.2012, 13:35 
Заслуженный участник


02/08/10
629
Та тут и расписывать нечего...
Берём $nm$ простых чисел, и по этой теореме найдётся натуральное число, что делится на первые $m$ простых, даёт в остатке $-1$ на следующие $m$, $-2$ на следующие, и тд...
Не уж-то такое на межнаре дали?

 Профиль  
                  
 
 Re: Задача-красавица с международки
Сообщение10.01.2012, 13:56 
Аватара пользователя


01/12/11

8634
MrDindows в сообщении #525226 писал(а):
Та тут и расписывать нечего...
Берём $nm$ простых чисел, и по этой теореме найдётся натуральное число, что делится на первые $m$ простых, даёт в остатке $-1$ на следующие $m$, $-2$ на следующие, и тд...
Не уж-то такое на межнаре дали?

На межнаре дали даже проще - частный случай m=2 :wink:
http://www.imo-official.org/problems.aspx
(1989, задача 5)

 Профиль  
                  
 
 Составные числа
Сообщение11.01.2012, 09:26 
Заслуженный участник


03/12/07
373
Україна
Существует ли такое натуральное число $x$, что для всех натуральных $n$ числа $x\mult 2^n+1$ - составные?

 Профиль  
                  
 
 Re: Задача-красавица с международки
Сообщение11.01.2012, 09:37 
Заслуженный участник


09/02/06
4401
Москва
бесконечно много. Кажется они имеют даже специальное название (то ли числа Серпинского).

 Профиль  
                  
 
 Re: Задача-красавица с международки
Сообщение11.01.2012, 23:40 
Заслуженный участник


03/12/07
373
Україна
Руст в сообщении #525561 писал(а):
бесконечно много. Кажется они имеют даже специальное название (то ли числа Серпинского).
А в Китае на отборочных соревнованиях (2007, задача 3.3)
http://www.artofproblemsolving.com/Foru ... 36d4d6a541
предлагают найти числа Серпинского
http://ru.wikipedia.org/wiki/Числа_Серпинского

 Профиль  
                  
 
 Re: Задача-красавица с международки
Сообщение12.01.2012, 07:22 
Заслуженный участник


12/09/10
1547
Ну предлагают не найти, а "всего лишь" доказать их существование...

 Профиль  
                  
 
 Re: Задача-красавица с международки
Сообщение12.01.2012, 08:03 


23/01/07
3497
Новосибирск

(Оффтоп)

У меня вопрос немного не по теме...
В статье про числа Серпинского в Википедии дословно сказано:
Цитата:
Например, если рассмотреть последовательность $3\cdot 2^{n}+1$, то в ней регулярно будут встречаться простые числа...

Меня интересует вопрос:
Слово "регулярно" применено здесь для "красного словца" (типа, что такие числа существуют и их много) или это говорит о доказанности того, что число простых данного вида бесконечно? Буду благодарен за любой ответ по существу моего вопроса или близко к "по существу", или хотя бы отдаленно к "по существу"!

 Профиль  
                  
 
 Re: Задача-красавица с международки
Сообщение12.01.2012, 09:20 
Заслуженный участник


08/04/08
8562

(Оффтоп)

Батороев в сообщении #525991 писал(а):
Слово "регулярно" применено здесь для "красного словца" (типа, что такие числа существуют и их много) или это говорит о доказанности того, что число простых данного вида бесконечно? Буду благодарен за любой ответ по существу моего вопроса или близко к "по существу", или хотя бы отдаленно к "по существу"!
Для красного словца.
Доказана лишь бесконечность простых в арифметических прогрессиях.
Во всех (вот вообще во всех) остальных последовательностях либо относительно просто доказываем, что простых конечно, либо (если их там бесконечное число, что встречается часто) - ограничиваемся гипотезой и догадками.

Кстати, интересно было бы собрать из гипотез о простых числах, содержащихся в "экспоненциальных" последовательностях от одной переменной какую-то одну общую гипотезу. Для многочленов она есть - это гипотеза Буняковского. А вот например, объединить все гипотезы хотя бы о всех последовательностях $A a^n \pm B b^n$ в одну - было бы интересно (тут только одно "неестественное" исключение - число простых Ферма считается конечным)

 Профиль  
                  
 
 Re: Задача-красавица с международки
Сообщение13.01.2012, 10:21 


23/01/07
3497
Новосибирск

(Оффтоп)

Sonic86 в сообщении #526000 писал(а):
Для красного словца.
Доказана лишь бесконечность простых в арифметических прогрессиях.
Во всех (вот вообще во всех) остальных последовательностях либо относительно просто доказываем, что простых конечно, либо (если их там бесконечное число, что встречается часто) - ограничиваемся гипотезой и догадками.

Кстати, интересно было бы собрать из гипотез о простых числах, содержащихся в "экспоненциальных" последовательностях от одной переменной какую-то одну общую гипотезу. Для многочленов она есть - это гипотеза Буняковского. А вот например, объединить все гипотезы хотя бы о всех последовательностях $A a^n \pm B b^n$ в одну - было бы интересно (тут только одно "неестественное" исключение - число простых Ферма считается конечным)

Жаль! Все жду, когда мое нестрогое док-во ВТФ станет строгим. :?
Слова "считается конечным" в отношении простых Ферма, похоже, Вы тоже применили для "красного словца". :-)

 Профиль  
                  
 
 Re: Задача-красавица с международки
Сообщение13.01.2012, 10:40 
Заслуженный участник


08/04/08
8562

(Оффтоп)

Батороев в сообщении #526334 писал(а):
Слова "считается конечным" в отношении простых Ферма, похоже, Вы тоже применили для "красного словца". :-)
Ну да :-) Хотя "считается" $\neq$ "доказано"

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 13 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group