Помогите пожалуйста доказать следующие утверждения:
Коммутант группы G является ее нормальным делителем, а фактор-группа по коммутанту - абелева.
Пытаюсь доказать первое утверждение:
Подгруппа H группы G является ее нормальным делителем тогда и только тогда, когда для любого элемента g из G выполняется gH=Hg.
В моем случае: g[h,f]=[a,b]g (где a,b,h,f из G). Или же:
. То есть нужно подобрать такие a и b, в чем и проблема.
Второе утверждение:
Фактор-группа по H абелева тогда и только тогда, когда: gfH=fgH. (т.к. H - нормальная). Тут тоже не понятно, как нужно доказывать.