Классика жанра такова. Математическая модель строится на некотором наборе предположений. Эти предположения можно даже назвать аксиомами для реального мира, выраженного математическим языком. Они принимаются «на веру» без каких-либо доказательств. Например, ДОПУСТИМ, что:
* Долю всех заболевших в некотором городе можно охарактеризовать действительным числом от 0 до 1
* Скорость заражения в данный момент пропорциональна количеству уже заболевших (переболевших) и еще не болевших.
Нетрудно записать это математическим языком.
Если речь пойдет о классической механике, см. там существует набор физических аксиом (они же предположения):
http://ru.wikipedia.org/wiki/%D0%9A%D0% ... 0%BA%D0%B0.
Далее, применяя заданную аксиоматику и всю мощь формального математического аппарата, модели можно «пользовать».
Доверие к (математической) модели складывается из двух факторов:
* Минимум предположений при ее построении
* Максимальное соответствие имеющимся данным из реального мира
Вот и все.
Если модель «неудачно» описывает реальность, мы ей «не верим». Но от этого она не перестает быть моделью. И мы ее выбрасываем.
Когда речь идет о компьютерном подборе модели, то нужен критерий выбора лучшей из них. Допуская некоторую вольность речи, можно сказать, что объем допущений – это выраженная в битах длина модели. Да, это дает плохой метод подбора модели, в то время как остальные вообще ... хранят молчание. И про волюнтаризм выбора длины формулы и прочее я уже отвечал неоднократно. Ну, найдите дискуссии 60-х годов о методах, применяемых в исследовании операций. Там имеем полный волюнтаризм. И чрезвычайно высокую практическую эффективность. Ну, работает это, что вы от меня хотите?
synphara может проделать такое упражнение. Возьмет игру на бирже как «реальность», и нейросети как ее «математическую модель». Т.е. просто выпишет, какие были сделаны тут предположения. И увидит, что эти предположения правильнее назвать «безудержной фантазией», и то и «галлюцинациями». И вот, исходя из этих галлюцинаций, будет делаться прогноз.
То, что описал
PAV, называется параметрической моделью. Например, в механике Ньютона, в котором мир состоит из тел, каждое из них имеет параметры: координаты, скорость, массу, приложенные силы. Но если объект в единственном экземпляре, это же не значит, что его поведение запрещено называть моделью.
epros у нас отжег. Хотя неявно была описана другая схема работы с заказчиком. Например так: берем у заказчика исторические данные за 6 месяцев, по 5-ти подбираем модель. На 6-м месяце (последнем) проверяем – вместе с заказчиком пялимся в график изменения счета. Если выигрыша нет, расходимся. Если есть выигрыш, пялимся в «формулу», которая играет (подбирается же аналитическая модель), анализируем ее. Можно даже прикинуть, когда модель обломится (деление на нуль, отрицательный корень и т.п.).
Большая просьба, прежде чем писать, хоть что-нибудь прочесть в обсуждении.