Нужно доказать , что многочлены Лежандра образуют ортогональный базис в евклидовом пространстве.
Это -- факт в определённом смысле нетривиальный.
Тривиальным можно считать их ортогональность: или по определению, как результат процесса ортогонализации (как все порядочные люди к этим многочленам и подходят), и тогда это тривиально в буквальном смысле -- или через формулу Родрига; тогда придётся, да, маленько поковыряться с интегрированиями по частям, но это не вполне спортивно: ведь и сама формула Родрига берётся-то не с потолка, а увязана именно с ортогональностью.
Только вот ортогональность этих многочленов сама по себе ещё ни в коей мере не означает их базисность. Если первое -- штука сугубо формальная, то вторая -- уже по существу (опирается в конечном счёте на теорему Вейерштрасса).
----------------------------------------
Да, не обратил сразу внимания. В каком это таком "евклидовом"-то?! Нету там никакого евклидового, при любой разумной интерпретации.