Правильно ли я понял, что рациональную кривую (Безье) можно представить как проекцию трехмерной кривой на плоскость.
Есть такая интерпретация.
Цитата:
При этом третьей координатой будет служить вес w. Если веса опорных точек одинаковы, то получим обычную кривую Безье. Меняя веса, будем изменять поведение кривой возле опорных точек.
Наверное, некая путаница в словах. Если

, то функцию

кто-то, наверное, назовёт
весом. Равным образом это слово применится и к коэффициентам

в выражении

(здесь без ограничения общности можно назначить

). Вот в Вашей фразе оба варианта, по-моему, и перемешаны.
-- 22 сен 2011, 20:45 --Цитата:
NURBS-кривая может и сегмент эллипса представлять и параболу, гиперболу.
Все эти штуки я Вам выше в формуле и написал. Нурбсами предлагаю не заморачиваться. Сделают они то же самое, только у Вас будет ещё перелом головы.
-- 22 сен 2011, 21:05 --Кстати, кривую с перегибом мы здесь не получим. Т.е. если по граничным условиям перегиб будет неизбежен, то она загиперболится, чтобы перегнуться в бесконечности.