2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2
 
 
Сообщение13.03.2008, 09:39 
Аватара пользователя
Dialectic писал(а):
Определим множество М - как множество состоящее из всех бесконечных множеств. Поскольку бесконечных множеств существует бесконечное количество, то множество М-обладает тем свойством, что оно содержит бесконечное количество элементов, следовательно множество М должно быть включено в множество М как элемент!


Dialectic писал(а):
Где конкретно в приведёном примере противоречие? То что, в той или иной аксиоматической теории может возникнуть противоречие,ещё не означает, что конретный пример приведённый Пенроузом противоречив.


Вас интересует противоречие в этой конструкции? No problem, как говорится :)

Рассмотрим множество $\mathcal{P}_{\mathrm{inf}}(M)$ всех бесконечных подмножеств $M$. Так как $M$ есть совокупность всех бесконечных множеств, а $\mathcal{P}_{\mathrm{inf}}(M)$ состоит только их бесконечных множеств, то $\mathcal{P}_{\mathrm{inf}}(M) \subseteq M$. Пусть теперь

$$
X = \{ x \in \mathcal{P}_{\mathrm{inf}}(M) : x \not\in x \}
$$

Так как $X \subseteq \mathcal{P}_{\mathrm{inf}}(M) \subseteq M$, то $X \subseteq M$ и либо $X$ конечно, либо $X \in \mathcal{P}_{\mathrm{inf}}(M)$.

Покажем, что предположение $X \in \mathcal{P}_{\mathrm{inf}}(M)$ приводит к противоречию. Допустим, что $X \in \mathcal{P}_{\mathrm{inf}}(M)$. Тогда либо $X \in X$, либо $X \not\in X$. Если $X \in X$, то по определению $X$ справедливо $X \not\in X$, поскольку мы включаем в $X$ только те элементы $\mathcal{P}_{\mathrm{inf}}(M)$, которые не являются элементами самих себя. Если же $X \not\in X$, то множество $X$ должно принадлежать себе как элемент множества $\mathcal{P}_{\mathrm{inf}}(M)$, не принадлежащий себе, то есть должно быть выполнено $X \in X$. В обоих вариантах противоречие налицо.

Осталось показать, что $X$ не может быть конечным. Предположим противное и пусть $X = \{ x_1, \ldots, x_n \}$ для некоторого $n \in \mathbb{N}$.

Так как $M$ бесконечно, то можно найти бесконечную последовательность $m_0, m_1, \ldots$ различных элементов из $M$. Пусть теперь

$$
K = \{ m_0, m_2, m_4, \ldots \}
$$

и

$$
L = \{ m_1, m_3, m_5, \ldots \}.
$$

Пусть также

$$
Y = \{ k \cup L : k \subseteq K \}.
$$

Каждый $y \in Y$ является бесконечным подмножеством $M$ и, значит, $Y \subseteq \mathcal{P}_{\mathrm{inf}}(M)$.

Пусть

$$
k_1 = \{ m_{2i} : i < n,\, m_{2i} \not\in x_{i +1} \},
$$

$$
k_2 = \{ m_{2(n+i)} : i \in \mathbb{N},\, m_{2(n+i)} \not\in m_i \}
$$

и

$$
y = k_1 \cup k_2 \cup L.
$$

Так как $k_1 \cup k_2 \subseteq K$, то $y \in Y$ и $y \in \mathcal{P}_{\mathrm{inf}}(M)$. Значит, либо $y \in X$, либо $y \in y$.

Однако если $y \in X$, то $y = x_{i+1}$ для некоторого $i<n$. Но тогда

$$
m_{2i} \in y \Leftrightarrow m_{2i} \in k_1 \Leftrightarrow m_{2i} \not\in x_{i+1}
$$

и $y \neq x_{i+1}$. Противоречие. Если же $y \in y$, то $y = m_j$ для некоторого $j \in \mathbb{N}$ и

$$
m_{2(n+j)} \in y \Leftrightarrow m_{2(n+j)} \in k_2 \Leftrightarrow m_{2(n+j)} \not\in m_j,
$$

так что $y \neq m_j$. Опять противоречие!

P. S. В заключение присоединяюсь к пожеланию Brukvalub: не читайте плохих книжек!!!

 
 
 
 Re: О множестве, которое содержит само себя в качестве элемента
Сообщение09.07.2011, 14:56 
Аватара пользователя
А можно ли в пределах аксиом объёмности, пары, выделения, объединения и бесконечности доказать, что не существует множество содержащее само себя?
Контекст такой. Я доказываю, что $x^+=y^+ \implies x=y$, используя вышеперечисленные аксиомы ($x$, $y$ - элементы множества натуральных чисел по фон Нейману, $x^+=x \cup \{x\}$).
Предположим $x \neq y$. Тогда $\exists a \in x, a \notin y$ (по аксиоме объёмности).
$a \in x \implies a \in  x \cup \{x\}$ (по аксиоме объединения) $\implies a \in y \cup \{y\}$, но $a \notin y \implies a \in \{y\} \implies a = y$.
Получили, что $x \cup \{x\} = a \cup \{a\}$, $a \in x$.
Из этого равенства следует, что $\forall y \in x \cup \{x\}, y \in a \cup \{a\}$. Возьмём $y = x \implies x \in a \cup \{a\}$.
Рассмотрим два варианта: $x \in \{a\}$ и $x \in a$.
В первом случае $x \in \{a\} \implies x = a$, во втором $x \in a$ и $a \in x$.
Не могу пока понять как показать противоречивость обоих вариантов без аксиомы регулярности. Или здесь нужно показать невозможность существования такого $a$ из построения элементов множества?

 
 
 
 Re: О множестве, которое содержит само себя в качестве элемента
Сообщение11.08.2011, 22:17 
Аватара пользователя
ean в сообщении #466769 писал(а):
А можно ли в пределах аксиом объёмности, пары, выделения, объединения и бесконечности доказать, что не существует множество содержащее само себя?

Думаю, что можно доказать метатеорему о том, что в пределах перечисленных аксиом невозможно доказать существование множества, содержащего самого себя. Если мы теперь признаём существующими лишь те множества, существование которых можно доказать, то всё Ok :-)

 
 
 
 Re: О множестве, которое содержит само себя в качестве элемента
Сообщение16.09.2011, 14:53 
Аватара пользователя
ean в сообщении #466769 писал(а):
А можно ли в пределах аксиом объёмности, пары, выделения, объединения и бесконечности доказать, что не существует множество содержащее само себя?
Думаю, что нельзя. И опровергается сия возможность контрпримером: упомянутым Dan B-Yallay выше по теме перечнем, содержащим себя (просто замените слово "перечень" на слово "множество"). Таковой перечень:
1) Может быть вполне конечным, так что даже не обязательно вспоминать про аксиому бесконечности.
2) Не является чем-либо противоречивым (если только мы не приняли аксиомы регулярности и таким образом не запретили перечням перечислять самих себя).

 
 
 
 Re: О множестве, которое содержит само себя в качестве элемента
Сообщение01.01.2012, 11:50 
А какой у множества, содержащего себя ранг ? Какая-то беда с основанием.
Попутно хотелось бы понять, какой ранг у счетно бесконечного множества, вроде бы счетно бесконечный, тогда в нем должен быть элемент бесконечного ранга, может ли этот элемент быть равен самому множеству ? Иначе говоря, можно ли без аксиомы регулярности опровергнуть, что в множестве, существование которого утверждает аксиома бесконечности, нет равного ему элемента ?

 
 
 
 Re: О множестве, которое содержит само себя в качестве элемента
Сообщение01.01.2012, 12:08 
Аватара пользователя
Ух ты! Похоже, что с чистого листа начинать надо.

 
 
 
 Re: О множестве, которое содержит само себя в качестве элемента
Сообщение09.04.2012, 20:33 
Извините меня конечно за тупость. Но можно на примере про аксиому регулярности?
Вот есть у меня множество, ну пусть натуральных чисел. Каким будет для него будет элемент y, что $y \in x$, но $y \cap x =  \varnothing$. Или логика такова, что ответ любое число. ибо $6 \cap N = \varnothing$ , потому что 6 это не множество, состоящее из 6-ки, а просто элемент, т.е. $6 \not = \{6\}$ ?
Извините за сумбурность

 
 
 
 Re: О множестве, которое содержит само себя в качестве элемента
Сообщение10.04.2012, 12:45 
Аватара пользователя
kaplansky в сообщении #558461 писал(а):
Вот есть у меня множество, ну пусть натуральных чисел. Каким будет для него будет элемент y, что $y \in x$, но $y \cap x =  \varnothing$.

$y = \varnothing$.

Формально натуральный ряд определяется так:

$0 = \varnothing$
$1 = \{ 0 \}$
$2 = \{ 0,1 \}$
...
$n+1 = \{ 0,1, \ldots, n \}$
...

$\mathbb{N} = \{ 0,1,2,3, \ldots \}$.

-- Вт апр 10, 2012 15:48:10 --

Вообще, для любого $n \in \mathbb{N}$ справедливо $n \subseteq \mathbb{N}$ и $n \cap \mathbb{N} = n$ :-)

 
 
 
 Re: О множестве, которое содержит само себя в качестве элемента
Сообщение10.04.2012, 13:18 
Ок, это всё понятно. Но каков же тогда будет элемент $y$ искомый ?

 
 
 
 Re: О множестве, которое содержит само себя в качестве элемента
Сообщение10.04.2012, 13:21 
Аватара пользователя
kaplansky в сообщении #558613 писал(а):
Ок, это всё понятно. Но каков же тогда будет элемент $y$ искомый ?

Ну как, $y = 0$. Я же написал!

 
 
 
 Re: О множестве, которое содержит само себя в качестве элемента
Сообщение10.04.2012, 16:22 
ух как! ясно, с этим примером понял, спасибо, буду думать.

 
 
 
 Re: О множестве, которое содержит само себя в качестве элемента
Сообщение12.10.2012, 18:47 
Простейший пример-множество всех множеств.Поскольку множество всех множеств является само по себе множеством,то оно содержит себя в качестве своего элемента :D

 
 
 
 Пенроуз
Сообщение06.11.2012, 21:17 
Brukvalub в сообщении #106016 писал(а):
Dialectic писал(а):
Определим множество М - как множество состоящее из всех бесконечных множеств.
Рассмотрение таких множеств как раз и приводит к противоречиям, поэтому в аксиоматических теориях их запрещено рассматривать (о чем Вам писали выше). Просто Пенроуз плохо учил теорию множеств, вот и оконфузился.

Так-с... Не надо трогать Пенроуза. Он хороший :)
Существование такого множества в той книге он нигде не утверждал, а просто пояснил примером, что содержащие себя множества тоже очень хотелось бы рассматривать. Обвинять Пенроуза в незнании теории множеств - это уж слишком!

Профессор Снэйп в сообщении #106123 писал(а):
P. S. В заключение присоединяюсь к пожеланию Brukvalub: не читайте плохих книжек!!!

Может быть и есть какие-то научно-популярные книжки, написанные выдающимися учёными, которые не стОит читать, но Пенроуз к ним точно не относится. Пенроуза определённо стОит читать! Это же настоящий математик, который одновременно физик - редкое явление, и это сразу видно по его книгам, ко многим вопросам по части физической реальности у него намного более разумный взгляд, чем обычно пропагандируется физиками-теоретиками.

 
 
 [ Сообщений: 28 ]  На страницу Пред.  1, 2


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group