При натуральных
и
число
является нечётным, поэтому
ни в коем случае не будет целым. Отсюда следует, что равенство
при натуральном
невозможно по тривиальной причине, никак не связанной с уравнением Ферма.Таким образом, Вы рассматриваете заведомо бессмысленный случай, но не рассматриваете случай, который действительно возможен:
.
Эти сомножители целые (при чётном
) и будут взаимно простыми, если
не делится на
, тогда они обязаны быть кубами. Однако ситуация может быть сложнее: если
делится на
, то эти сомножители имеют общий делитель
, причём,
делится на
, но не делится на
. В этом случае представление в виде произведения взаимно простых чисел имеет вид
. Вот эти два случая Вам и надо рассматривать.
Сожалею, но при глубоком уважении, я вынужден Вам возразить! Этого требуют мои убеждения и научная истина!Равенство при натуральном значении невозможно (это верно), но совсем не по тривиальной причине, особнно не без связи с неоднородным уравнением Ферма и правилами разложения разности двух дробных переменных степени n, исходяших из биномиальной теоремы Ньютона. Ваше изложение исходит из
методов решения однородного уравнения. Вы – и другие оппоненты – не учитываете, что исследуемое уравнение неоднородное и методы решения однородного уравнения для его решения не применимы, что
перенос элеметов сомножителей из одного сомножителя в другой нарушает правила разложения на множители дробного бинома. Другими словами: разложения дробного бинома, предлагаемого Вами, просто не существует. А исследовать повторно, давно проработанные мной, заведомо вопросные варианты решения, неприведшие к решению также оппонентов, мне, в возросте за 70, нет смысла, особенно после посвящения решению 46 лет.
На форуме я не встречал применения явной чётности переменных (хотя все переменны чётные и нечётные), приведения ВТФ к неоднородному виду (его условием является применение явной чётности переменных), также применения дробных переменных, для исследования разрешимости явным методом делимости.
Этому методу – сколько я не акцентирую – оппоненты не уделяют внимания, времени, по инерции оглашают псевдонаучным методом?! При этом настоятельно предлагают применять вопросные методы решения однородного уравнения для решения неоднородного уравнения. Ведь верного элементарного доказательства не существует, такого не представили и оппоненты! Поэтому убедительно прошу оппонентов достойно оценить понятие и свойства неоднородного полиномиального диофантова уравнения, также разложение дробного бинома на множители, чтобы оппонирование имело основу!!
Сделаю последнюю попытку на освещение метода, свойств неоднородного уравнения и дробного бинома, исходя из однородного уравнения:
Решение однороного уравнения можно ограничить на решение неоднородного уравнения, ибо из неоднородных решений однородные следуют. Неоднородные уравнения, в отличие от однородных, имеют особое свойство, пригодное для решения полиномиальных диофантовых уравнений: сомножители взаимно просты (при большем числе сомножителей не обязательно попарно)!
Введением явных переменных, приведением уравнения к неоднородному виду и введением дробных переменных, имеем:
/:Значения второго сомножителя натуральны при степени и дробные при всех простых значениях
в уравнении :/. Запишем варианты и формулы решения:
нечётное.
нечётное.
В однородном уравнении для 1. варианта, имеем:
В однородном уравнении для 2. варианта, имеем:
Выводы:1. В неоднородном уравнении с двумя сомножителями, при существовании решений, натуральные значения сомножителей взамино просты и их степень порознь равна степени одночлена с одной переменной! В противном случае уравнение не имеет требуемых решений. В неоднородном уравнении с большим числом сомножителей, при существовании решений, натуральные значения сомножителей взамино просты (не обязательно попарно) и степень их произведения равна степени одночлена с одной переменной (исходя из основной теоремы)! В противном случае уравнение не имеет требуемых решений. Решение имеет ряд особенностей, если в одночлене больше переменных.
2. В однородном уравнении, при существовании решений, натуральные значения сомножителей не обязательно взамино просты и степень их произведения равна степени одночлена с одной переменной (исходя из основной теоремы)! Полиномиальные диофантовы уравнения определяются основной теоремой арифметики, разложение разности двух переменных степени n (также дробных переменных) – биномиальной теоремой Ньютона (других разложений не существует)! Это приводит к двуединому условию разрешимости!С уважением: Sándor