Цитата:
Это значит, что любая функция f из I представима в виде f=hg, где h-непрерывная на отрезке [0,1] функция.Отсюда получаем f=O(g), на [0,1]
Но для функции f=|g|^(1/2) (корень из модуля g) в окрестности точки 1/4 такая оценка не имеет места.
Для случая I=(g1,...,gn) возьмём функцию f=|g1|^(1/2)+...+|gn|^(1/2).
Спасибо за подсказку, но данное решение уже было предложено преподавателю, и случай с главным идеалом был оценен как верный. Тем не менее, для функции
возникли затруднения с аналогичной оценкой сомножителей
Проблема в том, что в случае с несколькими порождающими, последние (порождающие) могут иметь множественные нули вблизи (1/4), с условием чтобы они не совпадали у всех одновременно. Ну, кроме точки (1/4) разумеется.
P.S. Для единственной порождающей есть еще решение -