2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу 1, 2  След.
 
 (Не)интересные мысли, спровоцированные гипотезой Коллатца
Сообщение06.06.2011, 23:29 


01/10/10

2116
Израиль (племянница БизиБивера)
Прочла вот эту тему. Задумалась. А что, если не доказательство нужно искать, а опровержение? И я говорю не конкретно о гипотезе Коллатца, но вообще о подобных гипотезах.
А теперь представтьте себе, что существует число, опровергающее гипотезу (скажем, Коллатца), но оно настолько огромно, что ни в одной из существующих нотаций (самая мощная из известных лично мне - это нотация Конвея: http://en.wikipedia.org/wiki/Conway_cha ... w_notation , буду рада узнать о более мощных) его нельзя даже записать (потребуется больше килограммов чернил, чем масса Вселенной (или больше битов памяти, чем всех атомов во Вселенной)). Как тогда быть? Человек такое число не найдёт, комп - тоже. И с чем же мы остаёмся?

 Профиль  
                  
 
 Re: (Не)интересные мысли, спровоцированные гипотезой Коллатца
Сообщение06.06.2011, 23:43 
Заслуженный участник
Аватара пользователя


18/05/06
13438
с Территории
Вы впадаете в стихийный ультраконструктивизм.

 Профиль  
                  
 
 Re: (Не)интересные мысли, спровоцированные гипотезой Коллатца
Сообщение07.06.2011, 08:19 
Заслуженный участник
Аватара пользователя


07/01/10
2015
Математику не должны заботить ограничения реальности; этим она и хороша.

 Профиль  
                  
 
 Re: (Не)интересные мысли, спровоцированные гипотезой Коллатца
Сообщение07.06.2011, 10:50 


01/10/10

2116
Израиль (племянница БизиБивера)
caxap в сообщении #455002 писал(а):
Математику не должны заботить ограничения реальности; этим она и хороша.

Сие касается и прикладной математики? Нет ведь.

 Профиль  
                  
 
 Re: (Не)интересные мысли, спровоцированные гипотезой Коллатца
Сообщение07.06.2011, 11:03 


21/07/10
555
Записать (не число, ограничение сверху) можно всегда - не проблема построить сколь угодно быструю нотацию.

 Профиль  
                  
 
 Re: (Не)интересные мысли, спровоцированные гипотезой Коллатца
Сообщение07.06.2011, 11:06 


01/10/10

2116
Израиль (племянница БизиБивера)
alex1910 в сообщении #455075 писал(а):
не проблема построить сколь угодно быструю нотацию.

Можно пример?

 Профиль  
                  
 
 Re: (Не)интересные мысли, спровоцированные гипотезой Коллатца
Сообщение07.06.2011, 11:26 


21/07/10
555
Xenia1996 в сообщении #455077 писал(а):
alex1910 в сообщении #455075 писал(а):
не проблема построить сколь угодно быструю нотацию.

Можно пример?


Ну, например, a-la Конвэй.
1. Берем беск. возрастающую последовательность нат. чисел.
2. F(n) = степенная башня из первых n членов этой последовательности.
3. F(1), F(2), .... определяют новую возрастающую последовантельность.
4. G(n) = степенная башня из первых n членов второй последовательности.
5. И.т.д - строим функции H,J,....

 Профиль  
                  
 
 Re: (Не)интересные мысли, спровоцированные гипотезой Коллатца
Сообщение07.06.2011, 11:31 


01/10/10

2116
Израиль (племянница БизиБивера)
alex1910 в сообщении #455097 писал(а):
Xenia1996 в сообщении #455077 писал(а):
alex1910 в сообщении #455075 писал(а):
не проблема построить сколь угодно быструю нотацию.

Можно пример?


Ну, например, a-la Конвэй.
1. Берем беск. возрастающую последовательность нат. чисел.
2. F(n) = степенная башня из первых n членов этой последовательности.
3. F(1), F(2), .... определяют новую возрастающую последовантельность.
4. G(n) = степенная башня из первых n членов второй последовательности.
5. И.т.д - строим функции H,J,....

Это не сколь угодно быстрая!
Нотацию такой быстроты Вы не построите.

 Профиль  
                  
 
 Re: (Не)интересные мысли, спровоцированные гипотезой Коллатца
Сообщение07.06.2011, 11:39 


24/03/07
321
Еще может быть так, что гипотеза верна, но доказательства не существует :-)
Там про обобщенный Колатц (т.е. с $(a,b)$ вместо $(3,1)$) какие-то такие утверждения есть, правда точно уже не помню.

 Профиль  
                  
 
 Re: (Не)интересные мысли, спровоцированные гипотезой Коллатца
Сообщение07.06.2011, 11:50 


01/10/10

2116
Израиль (племянница БизиБивера)
Dandan в сообщении #455108 писал(а):
Еще может быть так, что гипотеза верна, но доказательства не существует :-)

Если не существует, то как она может быть верна?

 Профиль  
                  
 
 Re: (Не)интересные мысли, спровоцированные гипотезой Коллатца
Сообщение07.06.2011, 11:54 


24/03/07
321
Xenia1996 в сообщении #455119 писал(а):
Dandan в сообщении #455108 писал(а):
Еще может быть так, что гипотеза верна, но доказательства не существует :-)

Если не существует, то как она может быть верна?

Ну, очевидно, она верна если не существует контрпримера :-)
А из того, что не существует доказательства правильности не следует, что она не правильна.


Вот http://citeseerx.ist.psu.edu/viewdoc/do ... 1&type=pdf та статья, где доказывается недоказуемость обобщенного Колатца.

 Профиль  
                  
 
 Re: (Не)интересные мысли, спровоцированные гипотезой Коллатца
Сообщение07.06.2011, 12:05 


21/07/10
555
Возможно. Однако, имея бизи бивер, можно его засунуть в пункт 1.
Также можно считать, что F(n) - башня из F(n-1) членов.
И еще миллион усовершенствований.

Это я к тому, что нет какой-то уникальной, с точки зрения скорости роста, нотации - любая элементарно перебивается.

 Профиль  
                  
 
 Re: (Не)интересные мысли, спровоцированные гипотезой Коллатца
Сообщение07.06.2011, 12:08 


01/10/10

2116
Израиль (племянница БизиБивера)
alex1910 в сообщении #455129 писал(а):
нет какой-то уникальной, с точки зрения скорости роста, нотации

Есть.
$a_1=$ вот этому. И тогда дальше уже некуда двигаться.

 Профиль  
                  
 
 Re: (Не)интересные мысли, спровоцированные гипотезой Коллатца
Сообщение07.06.2011, 12:12 


21/07/10
555
Xenia1996 в сообщении #455133 писал(а):
alex1910 в сообщении #455129 писал(а):
нет какой-то уникальной, с точки зрения скорости роста, нотации

Есть.
$a_1=$ вот этому. И тогда дальше уже некуда двигаться.


Ну да, если не считать того, что "вот это" не существует (некорректно определено).

 Профиль  
                  
 
 Re: (Не)интересные мысли, спровоцированные гипотезой Коллатца
Сообщение07.06.2011, 12:18 


01/10/10

2116
Израиль (племянница БизиБивера)
alex1910 в сообщении #455138 писал(а):

Ну да, если не считать того, что "вот это" не существует (некорректно определено).

А если я некорректно определена, я тоже не существую?
А ведь дедушка Картезий говорил "Coito, ergo sum" :lol1:

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 22 ]  На страницу 1, 2  След.

Модератор: Модераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group