2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3, 4, 5, 6, 7  След.
 
 Re: 2n^2+1, 3n^2+1, 6n^2+1, и все они - квадраты?
Сообщение23.05.2011, 12:54 
Заслуженный участник


17/09/10
2133
Вот совсем элементарное доказательство того, что $2n^2+1$ и $3n^2+1$ при натуральных $n$ не могут быть одновременно квадратами.
Пусть
1. $2n^2+1=u^2$, $3n^2+1=v^2$
2. Тогда $u, v, n$ попарно взаимно просты и $n$ - четное.
3. $u^2+n^2=v^2$ и $n=2ab, u=a^2-b^2, v=a^2+b^2$, $a>b$, $ab$=чет, $(a,b)=1$
4. $3*4a^2b^2+1=a^4+b^4+2a^2b^2$ или $a^4-10a^2b^2+b^4=1$
Но при натуральных $a>b$, $min(|a^4-10a^2b^2+b^4|)=23$.
Отсюда и следует, что не существуют нужные $a,b$, а с ними $n,u,v$

Кстати, когда я настаивал на доказательстве неразрешимости в натуральных числах, то имел в виду уравнение $x^4-10x^2y^2+y^4=z^2$ , хотя в правой части писал 1. Издержки.

 Профиль  
                  
 
 Re: 2n^2+1, 3n^2+1, 6n^2+1, и все они - квадраты?
Сообщение23.05.2011, 14:10 
Заслуженный участник


20/12/10
8858
scwec в сообщении #449164 писал(а):
Но при натуральных $a>b$, $min(|a^4-10a^2b^2+b^4|)=23$.

А доказательство? Хотя какое доказательство тут может быть, когда утверждение неверно: $a=3$, $b=1$. И вообще, очень сомнительно, что указанный минимум можно вычислить элементарно --- всё опять сведётся к решению уравнений Туэ. И если только какое-нибудь чудо ... Тогда продемонстрируйте его, и мы все порадуемся.

 Профиль  
                  
 
 Re: 2n^2+1, 3n^2+1, 6n^2+1, и все они - квадраты?
Сообщение23.05.2011, 15:25 
Заслуженный участник


17/09/10
2133
Действительно, минимум=8 (по недоразумению при первоначальном прогоне к расчету допускались только $a,b$ такие, что $a^3+b^3=d^2$, ну и получилось $a=2,b=1$).
Дела это не меняет.
Минимум на натуральных числах ищется именно элементарно.

 Профиль  
                  
 
 Re: 2n^2+1, 3n^2+1, 6n^2+1, и все они - квадраты?
Сообщение23.05.2011, 15:34 
Заслуженный участник


20/12/10
8858
scwec в сообщении #449206 писал(а):
Минимум на натуральных числах ищется именно элементарно.

Уверены? А вдруг ошибка? Выкладывайте, чего уж в кошки-мышки играть.

 Профиль  
                  
 
 Re: 2n^2+1, 3n^2+1, 6n^2+1, и все они - квадраты?
Сообщение23.05.2011, 15:44 
Модератор
Аватара пользователя


11/01/06
5660
scwec в сообщении #449164 писал(а):
Кстати, когда я настаивал на доказательстве неразрешимости в натуральных числах, то имел в виду уравнение $x^4-10x^2y^2+y^4=z^2$ , хотя в правой части писал 1.

Ну да. Причем, как я уже писал выше, $z$ обязано быть делителем числа 2 (в общем случае - числа $2(a-b)$).

 Профиль  
                  
 
 Re: 2n^2+1, 3n^2+1, 6n^2+1, и все они - квадраты?
Сообщение24.05.2011, 16:59 
Заслуженный участник


17/09/10
2133
После компьютерных расчетов мне показалось совершенно очевидным, что для любых достаточно больших $a,b$ выражение $|a^4-10a^2b^2+b^4|$ можно сделать сколь угодно большим. Так оно, видимо, и есть. В этом случае доказательство сводится просто к вычислению на компьютере минимума выражения $|a^4-10a^2b^2+b^4|$ перебором конечного числа значений $a,b$. Оно, конечно, и это верно, однако ведь надо вычислить это самое конечное число значений для перебора. В нашем случае достаточно с большим запасом $a<10$ и $b<10$. Но ясно, что это не очевидно, посколько решения ужасающе неустойчивы. Надо подумать.

 Профиль  
                  
 
 Re: 2n^2+1, 3n^2+1, 6n^2+1, и все они - квадраты?
Сообщение24.05.2011, 17:27 
Заслуженный участник


20/12/10
8858
Можно ещё пробовать решить уравнение $x^2-24y^4=1$ или доказывать, что ранг кривой $y^2=x^3-96x$ равен нулю. Приятно удивлюсь, если что-нибудь в этом духе удастся получить элементарными средствами.

 Профиль  
                  
 
 Re: 2n^2+1, 3n^2+1, 6n^2+1, и все они - квадраты?
Сообщение24.05.2011, 19:17 
Заслуженный участник


17/09/10
2133
Пожалуй интересней доказывать, что ранг $y^2=x^3-82x$ равен трем. Ну и далее по кругу.

 Профиль  
                  
 
 Re: 2n^2+1, 3n^2+1, 6n^2+1, и все они - квадраты?
Сообщение24.05.2011, 19:45 
Заслуженный участник


20/12/10
8858
scwec в сообщении #449735 писал(а):
Пожалуй интересней доказывать, что ранг $y^2=x^3-82x$ равен трем. Ну и далее по кругу.

Опять сплошные загадки :-) . Объясните, пожалуйста, откуда взялась эта кривая (а заодно, кстати, и та, с жуткими коэффициентами, я так и не понял). Особенно пугает её ранг ... Не знаю ни одного примера эллиптической кривой, для которой был бы элементарно посчитан её ранг $>0$.

 Профиль  
                  
 
 Re: 2n^2+1, 3n^2+1, 6n^2+1, и все они - квадраты?
Сообщение24.05.2011, 20:47 
Заслуженный участник


17/09/10
2133
nnosipov в сообщении #449693 писал(а):
Можно ещё пробовать решить уравнение $x^2-24y^4=1$ или доказывать, что ранг кривой $y^2=x^3-96x$ равен нулю. Приятно удивлюсь, если что-нибудь в этом духе удастся получить элементарными средствами.

Я отнесся к этому как к шутке. Вроде не совсем по теме. Также и ответил. Значит, я Вас не понял. Извиняюсь. Коли не шутка, то можно порешать.
Кривая из моего ответа действительно третьего ранга, известная. Отношения к Вашему сообщению не имеет.
Насчет жутких коэффициентов, так это как Морделл научил, так и делаем. В других координатах может и попроще бы была.
Вас не смущает, что $x^3+y^3=1$ приводится к виду $v^2=u^3-\frac{1}{108}$?
Так решаем?

 Профиль  
                  
 
 Re: 2n^2+1, 3n^2+1, 6n^2+1, и все они - квадраты?
Сообщение24.05.2011, 20:54 
Заслуженный участник


20/12/10
8858
Нет, у меня по теме: уравнение $a^4-10a^2b^2+b^4=1$ можно переписать в виде $(a^2-5b^2)^2-24b^4=1$ или $x^2-24y^4=1$, где $x=a^2-5b^2$, $y=b$. В нормальной форме Вейерштрасса получаем кривую $v^2=u^3-96u$. Хотя почему я считаю, что ранг этой кривой равен нулю? Это может оказаться и неправдой.

 Профиль  
                  
 
 Re: 2n^2+1, 3n^2+1, 6n^2+1, и все они - квадраты?
Сообщение24.05.2011, 21:04 
Модератор
Аватара пользователя


11/01/06
5660
nnosipov в сообщении #449798 писал(а):
В нормальной форме Вейерштрасса получаем кривую $v^2=u^3-96u$. Хотя почему я считаю, что ранг этой кривой равен нулю? Это может оказаться и неправдой.

Ранг равен 1:
Код:
? ellanalyticrank(ellinit([0,0,0,-96,0]))[1]
%1 = 1

 Профиль  
                  
 
 Re: 2n^2+1, 3n^2+1, 6n^2+1, и все они - квадраты?
Сообщение24.05.2011, 21:10 
Заслуженный участник


20/12/10
8858
Да-а, так и есть. Легко, конечно, доказать, что ранг положительный, но что он равен 1 ... Впрочем, это уже не важно. Уравнение $x^2-24y^4=1$ имеет бесконечно много рациональных решений, и даже если их как-то удастся описать, могут быть трудности с выделением целочисленных решений. Решать же это уравнение сразу в целых числах --- дело столь же дохлое.

 Профиль  
                  
 
 Re: 2n^2+1, 3n^2+1, 6n^2+1, и все они - квадраты?
Сообщение25.05.2011, 10:30 


23/01/07
3419
Новосибирск
nnosipov

А что, если организовать своеобразный "спуск"?
(примечание: каждое выражение составляется с учетом анализа остатков по основанию $8$)

$24y^4=x^2-1$

$2(12y_1^4-y_2^4)=\pm 2$


$12y_1^4-y_2^4=\pm 1$

Если $y$ нечетное число, то получаем в остатках по основанию $8$ противоречие, если - четное, то продолжаем:

$12y_1^4=y_2^4-1$

$2(6y_{11}^4-y_{12}^4)=\pm 2$

$6y_{11}^4-y_{12}^4=\pm 1$

$6y_{11}^4=y_{12}^4-1$

$2(3y_{111}^4-y_{112}^4)=\pm 2$

$3y_{111}^4-y_{112}^4=\pm 1$

$3y_{111}^4=y_{112}^4-1$

$2(\dfrac{3y_{1111}^4}{2}-y_{1112}^4)=\pm 2$

$\dfrac{3y_{1111}^4}{2}-y_{1112}^4=\pm 1$

.................
В конце концов приходим к нечетным $k, m$:
$24k^4=m^4-1$

$2(12k_1^4-k_2^4)=\pm 2$

$12k_1^4=k_2^4-1$

Последнее выражение в остатках по основанию $8$ не возможно.

-- 25 май 2011 15:07 --

Расшифровка индексов:
$y_{111}\cdot y_{112}=y_{11}$
$y_{11}\cdot y_{12}=y_1$
$y_1\cdot y_2=y$

Что такой метод может иметь место, показывает то, что если бы вместо четвертых степеней была бы вторая, то получив решение:
$24\cdot 1^2+1=5^2$
подъемом вверх можно находить новые:
$2\cdot 24\cdot 2\cdot 5^2+1=49^2$
$2(2\cdot 24\cdot 2\cdot 5^2)\cdot2(49^2)+1=4801^2$
$2(2\cdot (2\cdot 24\cdot 2\cdot 5^2)\cdot2(49^2)+1)\cdot 2(4801^2)+1=46099201^2$
и т.д.

 Профиль  
                  
 
 Re: 2n^2+1, 3n^2+1, 6n^2+1, и все они - квадраты?
Сообщение26.05.2011, 04:39 


23/01/07
3419
Новосибирск
Извиняюсь, неправильно расписал "спуск". :oops:
Надо так:

$24y^4=x^2-1$

$12y_1^4-2y_2^4=\pm 2$


$6y_1^4-y_2^4=\pm 1$

Если $y$ нечетное число, то получаем в остатках по основанию $8$ противоречие, если - четное, то продолжаем:

$6y_1^4=y_2^4-1$

$2(\dfrac{3y_{11}^4}{2}-y_{12}^4)=\pm 2$

$\dfrac{3y_{11}^4}{2}-y_{12}^4=\pm 1$

.................
В конце концов приходим к нечетным $k, m$:
$24k^4=m^4-1$

$12k_1^4-2k_2^4=\pm 2$

$6k_1^4=k_2^4-1$

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 97 ]  На страницу Пред.  1, 2, 3, 4, 5, 6, 7  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: denisart


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group