2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Расстояния между ладьями на шахматной доске
Сообщение17.05.2011, 16:24 
На шахматной доске $n\times n$ стоят $n$ не бьющих друг друга ладей. При любом ли натуральном $n>2$ все попарные расстояния между ними не могут быть различными?

(Доказала только для $n\ge 8$)

Все расстояния равны $\sqrt{a^2+b^2}$, где $1\le a, b\le n-1$. Поскольку a и b - натуральные, всего расстояний будет $(n-1)^2$, но, учитывая, что a и b можно поменять местами (если они различны), получаем число расстояний, равное числу пар ладей, а именно $\frac{n(n-1)}{2}$. Однако $7^2+1^2=5^2+5^2=50$, следовательно для всех досок, больших $7\times 7$, число различных расстояний будет всегда меньше числа пар ладей, а значит, найдутся две пары с одинаковым расстоянием.

Пожалуйста, помогите разобраться с маленькими досками.
Заранее благодарна!

 
 
 
 Re: Расстояния между ладьями
Сообщение17.05.2011, 23:47 
Кстати, забыла добавить, что в журнале "Квант" (не помню, за какой год) эта задача обобщается до $m$ - мерной доски $\underset{\text{всего }m\ \mathrm {\text{раз}}}{\underbrace{n\times n\times ...\times n}}$

 
 
 
 Re: Расстояния между ладьями
Сообщение18.05.2011, 09:25 
Допустим, при некотором n>2 найдётся расположение ладей на доске, удовлетворяющее условию.
Поскольку число пар ладей соответствует числу всевозможных расстояний между клетками доски, не лежащими на одной вертикали или горизонтали, найдётся пара ладей, расстояние между которыми равно $\sqrt{2}(n-1)$. Очевидно, эти две ладьи могут располагаться только в противоположных углах доски и бьют все клетки, лежащие на границе. Таким образом, остальные ладьи не могут располагаться на границе доски и, к примеру, расстояние $\sqrt{(n-1)^2+(n-2)^2}$ не достигается.

 
 
 [ Сообщений: 3 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group